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a b s t r a c t

A new computational framework to analyse the microscale dynamic behaviour of three-dimensional
polycrystalline materials with different lattice structures is presented. The absence of analytical solutions
for these stochastic materials has been a challenge in validating the numerical results. In macroscale
analysis, when the number of crystal aggregates in the microscale is large, polycrystalline aggregates
exhibit an effective isotropic nature. To model the elastodynamic effects, random crystalline orientations
and morphology configurations are used for each polycrystalline aggregate. The recently proposed funda-
mental solution based on double Fourier series for general anisotropy coupled to the dual-reciprocity
boundary element method is used. A drastic reduction in the degrees of freedom is achieved owing to
the nature of the boundary mesh. The stochastic time-dependent displacement wave under various
boundary conditions is evaluated, and the validation is carried out using homogenisation over the grain
surfaces. An assessment of the effective macroscopic properties of the available analytical isotropic mod-
els is proposed, wherein the convergence is evaluated using statistical samples. Numerical results are
presented using a large number of simulations to obtain a good confidence interval.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The analysis of constitutive behaviour of polycrystalline materi-
als under various load conditions is essential to improve the per-
formance in applications at macro- and micro-scales. The
presence of flaws in the microstructure causes a reduction in the
effective overall mechanical properties at macroscale. The analyses
of behaviour and failure using the boundary element method
(BEM) were carried out by Sfantos and Aliabadi [1] in 2D polycrys-
talline materials, and the 3D grain boundary formulation for the
microstructural modelling of polycrystalline materials was per-
formed by Benedetti and Aliabadi [2]. Furthermore, a multiscale
quasi-static analysis of polycrystalline materials using the BEM
was presented by Benedetti and Aliabadi [3]. The lattice structure,
crystalline orientations, and morphology of the polycrystalline
aggregate are considered in the microscale constitutive model.
Therefore, heterogeneous behaviour of mechanical fields at micro-
scale is produced.

Meshing methods have been developed for the simulations of
polycrystalline materials. Different schemes of volumetric and sur-
face mesh generators [2–6] for finite element method (FEM) and

BEM simulations have been presented. Process image reconstruc-
tion from experimental data [7–9] and Voronoi and Laguerre
tessellation-based meshing and remeshing are necessary for poly-
crystalline aggregates. Random and homogeneous morphologies
are required to avoid singularity problems and reproduce the
results from these simulations more accurately. BEM three-
dimensional triangle element meshes were generated by Benedetti
and Aliabadi [2,5] based on the methodology presented by Fritzen
et al. [4] for FEM analysis, and this methodology was applied in this
work.

The application of dynamic loads with a rapid rate of change
over time leads to other physical considerations, when compared
with static or quasi-static models. The inertial force dependency
of the mechanical fields is caused by the dynamic loads, which
resist accelerations of the structure. These physical effects are the
main characteristics of dynamics problems [10]. Further, the
dynamic deformation owing to high-rate loads should be analysed.
In this case, there is a high strain gradient in a part of the body, and
the remaining parts do not yet experience stresses. Strain and
stress waves propagate through the solid at a specified velocity
[11]. Dynamic loads play an important role in failure analysis, as
the material is more susceptible to failure under impulsive or
high-strain-rate loads, which affect the fracture behaviour [12].
Therefore, dynamic fracture mechanics should be applied [13].
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BEM is a powerful numerical method to model high stress and
strain gradients using surface discretisation. Therefore, crystal
aggregates can be modelled only using the grain boundaries. The
interface analysis is conducted using the multidomain algorithm.
The 3D fundamental solution and its derivatives based on double
Fourier series were proposed by Tan et al. [14]. To the best of the
authors’ knowledge, this is the most recent development of effi-
cient evaluation of these quantities. This fundamental solution
has been applied to generally anisotropic solids by Shiah et al.
[15–17]. Dynamic displacement and traction fields were evaluated
using the dual reciprocity boundary element method (DRBEM), as
presented by Kögl and Gaul [18] and Gaul et al. [19] for three-
dimensional problems of anisotropic elastodynamics. This method
uses a set of radial functions and transforms the domain integral
into a boundary integral using the dual reciprocity method. Time
integration is carried out using Houbolt’s algorithm [20]. Notably,
other numerical formulations have been used to treat dynamic
problems using BEM, such as dual reciprocity in the Laplace
domain [21]. Comparisons among the Laplace transform, dual
reciprocity, and time-domain methods using isotropic materials
can be found in [22], which reported accurate results. The applica-
tions of dynamic fracture mechanics were developed for 3D isotro-
pic models in Laplacian space [21,23,24], where the authors
computed the dynamic stress intensity factors. Furthermore, prob-
lems of modal analysis could be solved using this Laplace
formulation.

This new computational framework is based on related publica-
tions. The pre-processing is performed using an in-house C++/C
code based on [2,4], the Voro++ library by Rycroft [25] and the Tri-
angle mesh generator by Shewchuk [26]. We applied the 3D elas-
tostatic fundamental solution for anisotropic media based on
double Fourier series proposed by Tan et al. [14] and used by Rodri-
guez et al. [17]. The dynamic BEM analysis is carried out using the
DRBEM, using the particular solutions presented by Gaul et al. [19].
The displacement field in the time domain is obtained using Hou-
bolt’s time integration algorithm [20]. Owing to the large number
of degrees of freedom (DOFs), an Message Passage Interface
(MPI) implementation is required in the critical sections of the
in-house BEM code. Therefore, a MUltifrontal Massively Parallel
Sparse direct solver (MUMPS) [27,28] is used to solve the resulting
block sparse system of equations.

This work presents the first approach to model polycrystalline
materials under dynamic boundary conditions using BEM. Kögl
and Gaul [29–31] introduced works treating the dynamic beha-
viour of 3D anisotropic materials, where 3D piezoelectric materials
were analysed using DRM and the dynamic behaviour and free
vibration of anisotropic elastic solids were presented. In these pub-
lications, the authors used a fundamental solution based on the
Radon transform and DRBEM formulation. They presented exam-
ples with a domain of anisotropic media and compared the solu-
tion with the analytical models. Extensive static analysis on
modelling polycrystalline materials was presented by Benedetti
and Aliabadi in [2,5] using the anisotropic elastostatic Greens func-
tions based on Fourier transform, as presented by Wilson and
Cruse [32]. The two main differences are presented herein: first,
the application of dynamic boundary conditions on artificial poly-
crystalline materials with randomly oriented grain crystal planes;
second, the use of an anisotropic fundamental solution based on
double Fourier series, as proposed by Tan et al. [14].

In this paper, a new computational framework for the dynamic
analysis of 3D hexagonal (HCP) and cubic (BCC/FCC) anisotropic
polycrystalline materials is presented. Dynamic simulations using
step, ramp, and harmonic loads are carried out. In order to validate
these dynamic models, in the absence of analytical solutions for
anisotropic media, comparisons with isotropic macroscale
dynamic models are presented, using the effective Youngs moduli.

These isotropic models and effective elastic properties are avail-
able in the literature. The convergence of this model depends on
the (large) number of crystal aggregates included in the micro-
scopic model. In the case of polycrystalline materials, isotropic
behaviour is achieved when the number of grains is large. This
leads to high computational requirements for the simulations.
Owing to the large number of DOFs of this physical model, dis-
tributed memory architecture is used with MPI parallelisation.

2. Material modelling

Polycrystalline materials are composed of random morphology
grains or crystals with each grain having an individual crystalline
orientation at microscale. The grain medium is modelled as a linear
elastic anisotropic material such as metallic or ceramic crystalline
materials. Artificial polycrystalline morphologies are generated
and discretised to model the overall dynamic behaviour from a
set of stochastic distributed material properties [1–3,33]. In this
work, a boundary element mesh was generated following the
scheme initially proposed in [2] using three-node discontinuous
boundary elements to discretise the structure; the C++/C descrip-
tion algorithm can be found in detail in [33].

Dynamic simulations are carried out for zinc, copper, and iron.
The anisotropic elastic constants and mass density values of these
materials at microscale are presented in Table 1.

As suggested by Fritzen et al. [4], Euler rotation angles and con-
vention z� x� zð Þ are implemented to obtain stiffness tensor C at
specific orientation, and the angles are generated using a uniform
distribution from 0� to 360�.

3. Dynamic BEM formulation

Three-dimensional anisotropic problems of elasticity are anal-
ysed using the boundary element formulation for dynamic loading.
General anisotropic solids are modelled using the displacement
fundamental solution based on double Fourier series proposed by
Tan et al. [14]. In this case, a multidomain algorithm is used to
assemble the overall system of equations of the polycrystalline
structure. The boundary integral equation expresses the relation-
ship between displacements ui and traction ti on a surface C using
known fundamental solutions for displacements Uikðx0;xÞ and trac-
tion Tikðx0;xÞ. For a homogeneous elastic body, the boundary inte-
gral equation (BIE) considering the body forces on the domain X is
given by

cikðx0Þuiðx0Þ þ
Z
C
Tikðx0;xÞuiðxÞdC

¼
Z
C
Uikðx0; xÞtiðxÞdC�

Z
X
q€uiUikðx0;xÞdX; ð1Þ

where ðx0Þ and ðxÞ are the source and field points, respectively;
cikðx0Þ is dik=2 for a smooth surface boundary at the source point;
q is the mass density. For transient analysis, the body forces are
caused by the acceleration field €ui.

3.1. DRBEM formulation

To model the dynamic effects, the response of the displacement
field is obtained in the time domain. In order to develop this
dynamic analysis, it is necessary to transform the domain integral
into a boundary integral by applying the dual reciprocity formula-
tion as presented by Kögl and Gaul [18,19]. The domain integration
in Eq. (1) can be represented as

q€ui ¼
XM
m¼1

f mik xð Þam
i ; ð2Þ
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