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a b s t r a c t

An explicit method for nonlinear transient dynamic analysis of spatial beams with finite rotations using a
corotational total Lagrangian finite element formulation is presented. The kinematics of the beam ele-
ment is described in the current element coordinate system constructed in the current configuration
of the beam element. The element deformation and inertia nodal forces are derived by the virtual work
principle, the d’Alembert principle, and the consistent linearization of the geometrically nonlinear beam
theory. A nodal rotation vector is used to represent the finite rotation of a base coordinate system rigidly
attached to each node of the discretized structure. A numerical procedure of explicit method is proposed
for the solution of the nonlinear equations of motion. The standard central difference method is applied
to the incremental displacement vector and the incremental rotation vector, and the time derivatives of
displacement vector and rotation vector. The nodal orientations are updated by the incremental nodal
rotation vectors. The values of nodal rotation vectors are reset to zero in the current configuration.
In order to assess the efficiency and the accuracy of the proposed method, numerical examples are

studied and compared with the results obtained using the implicit method based on the Newmark
method.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The implicit methods based on the Newmark direct integration
method have been extensively employed in nonlinear transient
dynamic analysis of three-dimensional beam structures undergo-
ing large displacements and finite rotations using the total Lagran-
gian (TL) formulation [1–13], the corotational total Lagrangian (CR-
TL) formulation [14], the corotational (CR) formulation [15–17],
and the combination of CR and TL formulation [18]. In [14], a con-
sistent CR-TL formulation is proposed to derive the deformation
nodal force vector and the inertia nodal force vector. In [16,17], a
consistent CR framework is used to derive the internal force vector
and the tangent stiffness matrix, and the inertia force vector and
the tangent dynamic matrix. In [18], the CR formulation is used
to develop expressions of the deformation force vector and the tan-
gent stiffness matrices, while the inertia force vector and the tan-
gent inertia matrix are derived using the TL formulation. It seems

that the deformation forces and the inertia forces may be derived
by adopting different formulations.

The CR-TL formulation is an approach blending the TL and CR
descriptions [19]. A good description of the CR formulation and
its relation to the TL formulation is given by Mattiasson and
Samuelsson [20]. In the TL formulation, the reference configuration
is the initial undeformed element configuration. The reference con-
figuration used in the CR formulation is a corotated configuration,
which is obtained as a rigid body motion of the reference configu-
ration of the TL formulation from the initial to the current (or
neighboring) element configuration. The reference configurations
of the CR and CR-TL formulation are coincident at the current state.
However, the reference configuration of the CR formulation is a
moving frame, while that of the CR-TL formulation is an inertial
frame which is kept fixed at the current state. Newton’s laws could
hold in their simplest form in the inertial frame. Thus, it may be
easier to derive the inertia forces using the CR-TL formulation than
using the CR formulation.

Generally, implicit algorithms are very effective for structural
dynamics problems in which the response is predominantly gov-
erned by a relatively small number of low frequency modes, while
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explicit algorithms are efficient for dynamics problems in which
the response is more influenced by higher modes. However, the
application of the explicit methods in the nonlinear transient
dynamic analysis of three-dimensional beams with finite rotations
has been rather limited [21–23]. Hence, the object of this paper is
to present an explicit integration method based on the central dif-
ference method for nonlinear transient analysis of spatial beams
with finite rotations using a CR-TL finite element formulation.

In [24], a CR-TL formulation of beam element for the static non-
linear analysis of three-dimensional beam structures is proposed.
To treat arbitrarily large rotation of node in space, the orientation
of the node is described by a base coordinate system rigidly
attached to each node of the discretized structure, and a nodal
rotation vector is used to represent the finite rotation of the base
coordinate system. The coordinate system associated with the ref-
erence configuration of the beam element is chosen to be the cur-
rent element coordinate system constructed at the current
configuration of the element. Therefore, the current element coor-
dinate system is an inertial local coordinate system, not a moving
coordinate system. Three rotation parameters are defined in the
current element coordinates to determine the orientation of ele-
ment cross section. The element deformation nodal force is derived
by the virtual work principle and the consistent second order lin-
earization of the fully geometrically nonlinear beam theory. This
formulation is extended for the nonlinear dynamic analysis of
the beam structures in [14]. Because the coordinate system associ-
ated with the reference configuration is regarded as an inertial
local coordinate system, the first and second time derivatives of
the position vector defined in the current element coordinates
are the absolute velocity and acceleration. A numerical procedure
based on the Newmark direct integration method and the
Newton-Raphson method is proposed for the solution of the non-
linear equations of motion. The standard Newmark method with
the stiffness matrices and mass matrices of the elementary beam
element and bar element was applied to the incremental displace-
ment vector and incremental rotation vector, and their time
derivatives. The formulation and numerical procedure were proven
to be very effective by numerical examples studied in [14]. Note
that the nodal orientations of the discretized structure are updated
by the incremental nodal rotation vectors at each time step and
iteration, which entails a large storage pool and extra computa-
tional operations. Thus, an efficient procedure for orientation
update may be indispensible. It can be noted that for incremental
rotation vector most of the formulation details have been clarified
in [25], both in spatial and material version, including the dynam-
ics. In order to include the nonlinear coupling among the bending,
twisting, and stretching deformations, the terms up to the second
order of rotation parameters and their spatial derivatives are all
retained in the element deformation nodal forces in [14,24]. How-
ever, it was reported that the third order term of the twist rate
should be retained in the element deformation nodal forces for
the geometric nonlinear analysis of thin-walled beams in [26,27].
It was also reported in [26] that the second-order terms of the ele-
ment deformation nodal force containing the twist angle and
slopes the beam element will converge to zero with the decrease
of element size, and if these terms are removed from the element
nodal forces, the convergence rate of the solution may be
increased. It seems that the complexity of the element nodal forces
could also be significantly reduced by dropping the second-order
terms containing the twist angle and slopes the beam element.
Hence, the CR-TL formulation proposed in [14,24,26,27] is adapted
and used in this paper. The element deformation and inertia nodal
forces are derived by the virtual work principle, the d’Alembert
principle, and the consistent second order linearization of the fully
geometrically nonlinear beam theory. Since an explicit integration
method is used in this paper, the tangential stiffness matrix is not

needed and not developed. A numerical procedure of explicit
method based on the central difference method is proposed here
for the solution of the nonlinear equations of motion. The standard
central difference method is applied to the incremental displace-
ment vector and the incremental rotation vector, and the time
derivatives of displacement vector and rotation vector. The nodal
orientations of the discretized structure are updated by the incre-
mental nodal rotation vectors. Then, the values of nodal rotation
vectors are reset to zero in the current configuration. To assess
the efficiency and accuracy of the proposed method, numerical
examples are studied and compared with results obtained from
the implicit numerical procedure based on the Newmark method
[14] and the results reported in the literature.

2. Finite element formulation

The kinematics of the beam element and the corotational total
Lagrangian finite element formulation proposed in [14,24,26,27]
are adapted and employed here.

2.1. Basic assumptions

The following assumptions are made in the derivation of the
beam element behavior.

(1) The beam is prismatic and slender, and the Euler-Bernoulli
hypothesis is valid.

(2) The cross section of the beam is doubly symmetric.
(3) The unit extension and the twist rate of the centroid axis of

the beam element are uniform.
(4) The cross section of the beam element does not deform in its

own plane, and strains within this cross section can be
neglected.

(5) The out-of-plane warping of the cross section is the product
of the twist rate of the beam element and the Saint Venant
warping function for a prismatic beam of the same cross
section.

(6) The deformation displacements and rotations of the beam
element are small.

(7) The strains of the beam element are small.

In conjunction with the CR-TL formulation, the sixth assump-
tion can always be satisfied if the element size is properly chosen.
The assumption of small strains may not be required in the CR-TL
formulation. However, only the linear elastic material is considered
in this study. The yield strains for most engineering materials are
small. Thus, the assumption of small strains is used here.

2.2. Coordinate systems

In order to describe the system, we define three sets of right-
handed rectangular Cartesian coordinate systems:

(1) A fixed global set of coordinates, XG
i (i = 1, 2, 3) (see Fig. 1);

the nodal coordinates, displacements, rotations, velocities,
and accelerations, and the equations of motions of the sys-
tem are defined in these coordinates.

(2) Element cross section coordinates, xSi (i = 1, 2, 3) (see Fig. 1);
a set of element cross section coordinates is associated with
each cross section of the beam element. The origin of this
coordinate system is rigidly attached to the centroid of the
cross section. The xS1 axis is chosen to coincide with the
normal of the unwrapped cross section, and the xS2 and xS3
axes are chosen to be the principal directions of the cross
section.
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