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a b s t r a c t

We present novel overlapping finite elements used with the Bathe time integration method to solve tran-
sient wave propagation problems. The solution scheme shows two important properties that have been
difficult to achieve in the numerical solution of general wave propagations: monotonic convergence of
calculated solutions with decreasing time step size and a solution accuracy almost independent of the
direction of wave propagation through the mesh. The proposed scheme can be efficiently used with irreg-
ular meshes. These properties make the scheme (the combined spatial and temporal discretizations)
promising to solve general wave propagation problems in complex geometries involving multiple waves.
A dispersion analysis is given and various example problems are solved to illustrate the performance of
the solution scheme.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The finite element method with direct time integration is
widely employed to solve transient wave propagation problems.
Using the traditional finite element solution approach, however,
accurate solutions are difficult to obtain due to the dispersion
and dissipation errors caused by the spatial and temporal dis-
cretizations, see for example Refs. [1–7]. Accurate solutions can
only be obtained of rather simple problems, like one-dimensional
problems with a single wave traveling through the domain. In this
case, a uniformmesh and optimal time step size can be used. How-
ever, for geometrically complex problems, irregular meshes need
in general be used and it is difficult to improve the solution accu-
racy by refining the mesh and decreasing the time step size, which-
ever spatial and time discretizations are used. For such irregular
meshes, the solution accuracy depends on the propagation direc-
tion considered even when the wave is traveling through an isotro-
pic medium. The traditional finite element method with direct
time integration is, therefore, not very effective for the solution
of general two- and three-dimensional wave propagation problems
with waves propagating in different directions and at different
wave speeds.

Considerable research efforts have focused on reducing the
dispersion error of finite element solutions, see for example Refs.
[8–12]. Also, the spectral element method can be used [13,14].

However, the above difficulties have not been overcome when con-
sidering complex geometries, anisotropic media, general boundary
conditions and multiple waves traveling through the continuum.

The method of finite spheres, a meshless method, enriched for
wave propagation problems can be used with the Bathe time inte-
gration scheme to solve wave propagation problems but uniform
spatial discretizations need be used [15,16]. An important observa-
tion in Refs. [15,16] is that in the uniform spatial discretizations, a
decrease in the time step size leads to a more accurate solution,
which is what an analyst intuitively expects, and numerical aniso-
tropy is almost negligible. These are important observations
because by using the largest wave speed to establish the time step
size, accurate solutions for multiple types of waves can be obtained
and regardless of the propagation directions. The details of the
mathematical analysis of the solution procedure and illustrative
example solutions are given in Refs. [15,16].

However, the major difficulty in using the method of finite
spheres, like other meshless methods, is the very expensive
numerical integration for the construction of the mass and stiffness
matrices [17–19]. The integration cost is clearly prohibitive for
irregular discretizations using spheres, see Ref. [19]. For uniform
discretizations, the numerical integration can be performed only
once for a typical sphere and the result can then be reused [18],
but this approach can of course not be employed when non-
uniform spatial discretizations need be used. The high computa-
tional cost of the method impedes its wide practical use in
industry.
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Recently, we proposed a new paradigm of analysis using mostly
traditional finite elements with some overlapping finite elements,
like finite spheres [19–22]. We also developed novel overlapping
finite elements and demonstrated that for static analysis, using
these overlapping finite elements, the solution accuracy is almost
insensitive to geometric distortions and the numerical integration
is not very expensive compared to the use of traditional finite ele-
ments [22]. While we considered only static solutions, the use of
overlapping finite elements has clearly also good potential for
dynamic analyses.

In this paper, for the solution of transient wave propagation
problems, we enrich the overlapping finite elements of Ref. [22]
using trigonometric functions and use the Bathe time integration
method because of its favorable dissipation properties [23,24].
The same approach has already been applied for use of a traditional
finite element [25] and the method of finite spheres [15,16]. How-
ever, as already mentioned above, the use of the method of finite
spheres is not efficient in general practical analyses because of
the very expensive numerical integrations. For the traditional finite
element enriched with trigonometric functions, the solution effort
is more acceptable, although high, but the solution accuracy is not
as desired because the predicted response sensitively depends on
the directions of waves traveling through the mesh and fine
meshes or high-order harmonic functions are required.

Our objective in this paper is to analyze the overlapping finite
element enriched with trigonometric functions together with the
Bathe time integration method and illustrate that the combined
spatial and time discretization scheme can be used to solve wave
propagations in complex geometries using regular or irregular
meshes. Hence, as we also demonstrate, the element can be used
with the new paradigm of finite element solutions for CAD.

In the next section, we formulate the overlapping finite element
for transient wave propagation problems. Then, in Section 3, we
study the dispersion properties of the proposed scheme. There-
after, in Section 4, we provide the calculated solutions of various
wave propagation problems to illustrate the capability of the solu-
tion scheme. We focus on showing that even when using irregular
meshes good results are obtained. Finally, we give the conclusions
of our research in Section 5.

2. Spatial approximation scheme

In the new paradigm of finite element analysis, the global
analysis domain is discretized by traditional finite elements (that
do not overlap) and finite elements that overlap [20,21]. For every
overlap region, the solution variable u is approximated as [19,22]
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where q is the number of nodes in the overlap region, hI is the shape
function used in the traditional finite element [26], wI is the local
field of the overlapping element I, N I is the set of nodes located
in the overlapping element I, ûI

J is a partition of unity function, IJ

is an index set and pn is a set of local basis functions (e.g., a polyno-
mial for elliptic problems) which span the local approximation

space Vh
J with the corresponding coefficient of node J. It is important

to note that the function ûI
J is a polynomial and hence the compu-

tational cost for establishing the stiffness and mass matrices is not
high.

For the solution of two-dimensional wave propagation (hyper-
bolic) problems, the bi-linear polynomials and trigonometric func-
tions (used like polynomials) are employed for the local
approximation space, i.e., at node J we use

Fig. 1. Uniform mesh and propagation angle of a sinusoidal plane wave.
Fig. 2. Dispersion properties of (a) OFE-TRI1 and (b) FE-TRI1 discretizations for
various propagation angles.
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