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a b s t r a c t

This article presents an efficient numerical strategy to simulate the damage in composite laminates under
low velocity impact. The proposed method is based on a separated representation of the solution in the
context of the Proper Generalized Decomposition (PGD). This representation leads to an important reduc-
tion of the number of degrees of freedom. In addition to the PGD, the main ingredients of the model are
the following: (a) cohesive zone models (CZM) to represent the delamination and the matrix cracking, (b)
a modified nonlinear Hertzian contact law to calculate the impact force, (c) the implicit Newmark inte-
gration scheme to compute the evolution of the solution during the impact. The method is applied to sim-
ulate an impact on a laminated plate. The results are similar to the solution obtained with a classical finite
element simulation. The shape of the delaminated area is found to be coherent with some experimental
results from the literature.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The ever growing demand for lighter structures results in the
increasing replacement of metallic materials by composite materi-
als. While composite materials offer a number of superior design
characteristics, composite structures are much more sensitive to
impact damage than similar metallic structures. Impact can result
in numerous damage mechanisms, ranging from barely visible
impact damage (BVID) to complete penetration, which neverthe-
less severely reduces the stiffness and the residual strength of
the composite structures. Impacts caused by foreign objects may
arise during the life span of a structure including manufacturing,
service, and maintenance operations. In the present work only
low velocity impact events will be considered although the pro-
posed numerical strategy may be applied to other kind of dynamic
loads.

The development of efficient dynamic simulations for compos-
ite structures under low velocity impact is a very challenging issue.
There are many scientific locks, in particular:

� Composite structures have often a small dimension (thickness)
compared to the others (shell or plate structures). When using
3D elements, a fine mesh is required to keep a good precision
in the thickness which results in a very high number of ele-
ments to cover the entire volume.

� The modeling of damages can also lead to numerical difficulties.
For example, the use of cohesive elements is an appealing
choice. This kind of elements is particularly well adapted to
treat delamination and fibers/matrix decohesion. However,
cohesive elements need very fine meshes to ensure the numer-
ical stability.

� Explicit dynamic calculations lead to restrictive time steps to
satisfy the stability condition. In the other hand, the use of
implicit scheme causes solving some non linear problems many
times which is numerically costly. The strong non-linearities
related to the damage model are generally difficult to solve
and require high computational resources.

The main objective of this work is to propose an efficient
numerical solver able to simulate the complex behavior of compos-
ite laminates with reasonable computational time and accuracy. To
reach this objective, an approach based on model reduction is
chosen.
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1.1. Model reduction

The idea is to approximate the solution under a separated form.
If we consider a plate structure where z is the coordinate in the
direction normal to the plate, an unknown field (the displacement
in general) can be expressed with the following separated
representation:

uðx; y; zÞ ¼
Xn
i¼1

Fiðx; yÞ � GiðzÞ ð1Þ

where the functions Fi and Gi for i ¼ 1; . . . ; n need to be determined.
A few solvers exist to compute this kind of solution. Here, the
Proper Generalized Decomposition (PGD) will be considered.

This numerical method consists in building the separated repre-
sentation of the solution using a greedy algorithm with no a priori
knowledge of any reduced basis. If n is small enough, the total
number of degrees of freedom is significantly reduced. Only a 2D
mesh is required and the problem is greatly simplified in compar-
ison to the full 3D approach.

The PGD with a space-time separated representation was orig-
inally proposed by Ladeveze under the name ‘‘radial loading
decomposition” in the context of the LATIN method. The idea
was to develop a non-incremental solver [1,2]. Ammar et al. [3,4]
devised the first version of the PGD strategy for multi-
dimensional problems. It was originally applied to the high-
dimensional kinetic models of complex fluids. After that, the PGD
was successfully applied to a wide variety of problems. For
instance, the PGD procedure was applied by Ammar et al. [5] to
model the degradation of a plastic material which is a complex
transient problem. A separated representation was also used by
Chinesta et al. for solving the chemical master equation [6] and
stochastic equations within the Brownian configuration field
framework [7]. The PGD was applied in other studies for thermal
problems in composite materials [8]. Nouy used the PGD to study
stochastic problems [9,10]. This approach also allows for the fast
computation of problems defined in plate or shell domains. The
advantage is that 3D solutions can be obtained with a computa-
tional cost characteristic of standard 2D solutions [11]. This
approach has been applied to composites shell structures [12]
and have been improved using high order interpolation in the
thickness [13,14]. In this work the PGD will be adapted to simulate
a low velocity impact on a composite laminate involving damages.

1.2. Failure mechanisms in low velocity impact

Low velocity impact damage in composites is insidious due to
the invisible damages they can cause. These damages can drasti-
cally decrease the residual strength of composite structure, for
instance in compression after impact. For unidirectional (UD) lam-
inates under low velocity impact, significant amount of permanent
damage in the form of matrix cracking, delaminations and fiber
breakage may be present without being detectable by visual
inspection. The failure mechanisms usually occur in the listed
order with increasing impact energy. Matrix cracking has been
widely reported as the first type of failure induced by transverse
low velocity impact [15–17]. It acts as a starting point for the prop-
agation of delamination. Fig. 1 shows the typical matrix cracking
and delamination damage found in an impacted composite speci-
men. Matrix cracks appear parallel to the fibers due to tension or
shear.

The initiation and propagation of matrix cracks are strongly
dependent on the stacking sequence [18–20]. Two types of matrix
cracking can be observed: tensile matrix cracks and shear matrix
cracks. Tensile matrix cracks are formed by the flexural deforma-
tions due to the tensile bending stresses. These cracks are generally

located at the lower plies. Shear matrix cracks form in the upper
plies directly under the impact zone and are induced by the high
transverse shear stress through the material, and are inclined at
approximately 45�. The matrix cracks first appear in the lowest
ply [21]. Due to the coupling between delamination and matrix
cracking, the initiation of delamination is located on the matrix
cracks.

Delamination is often considered to be the most energy con-
suming damage mechanism during a low velocity impact. The
majority of the energy absorbed in the laminate during impact dis-
sipates into delamination propagation. Delaminations occur at the
interfaces between plies with different fiber orientations and tend
to initiate at the bottom interface and progressively becomes smal-
ler towards the impact face. The shape of the delaminated area
changes with the orientation of plies and is usually a peanut with
its major axis oriented in the fiber direction of the lowermost layer
at the interface, as depicted in Fig. 2. The peanut shape is a result of
the shear stress distribution around the impactor, the interlaminar
shear strength in the fiber direction and the matrix cracking. Fiber
failure mostly appears after matrix cracking and delamination. This
failure mode may occur under the impactor due to locally high
stresses and indentation effects.

2. Problem statement

2.1. Governing equation

The weak form of the equilibrium equation in a domain Xwith-
out body force and neglecting the damping effects reads:ZZ

X
qu� � €udXþ

ZZ
X
eðu�Þ � ðAeðuÞÞdX ¼

Z
C
Textu�dC ð2Þ

where u ¼ ðu;v ;wÞT is the displacement field, €u ¼ ð€u; €v ; €wÞT is the
acceleration field, u� is the virtual displacement and e is the strain
tensor using the vectorial form:

e ¼

exx
eyy
ezz
2eyz
2exz
2exy

0
BBBBBBBB@

1
CCCCCCCCA

ð3Þ

Text is the external force on the boundary C. A is a matrix related to
the material law in each layer. For a linear orthotropic material, A is
defined by Eq. (4).

A�1 ¼
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ð4Þ

Ex; Ey; Ez are the elastic modulus, mxy; mxz; myz are the Poission’s
ratio and Gxy; Gxz; Gyz are the shear modulus expressed in the
orthotropic basis ðx; y; zÞ.

After assembling all mass and stiffness matrices with a finite
element approximation, the discretized motion equations of the
laminate take the following form:

½M�f€ug þ ½K�fug ¼ fFg ð5Þ
where ½M� and ½K� are the coherent mass and stiffness matrices of
the composite laminate, fug and f€ug are respectively the nodal
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