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a b s t r a c t

The topology optimization for practical engineering problems is computationally expensive owing to the
complexity of the entire system. Therefore, most of the topology optimization is currently being con-
ducted on simplified decomposed subsystems, which are then assembled in order to reduce the compu-
tational cost. Under these circumstances, there is a possibility that an inappropriate design might be
obtained from the overall system. To overcome this limitation, an accurate and efficient algorithm for
performing the structural topology optimization of deformable bodies containing dissimilar interfaces
is introduced. Based on the mortar method, the condensed mortar method is proposed to connect dissim-
ilar interface boundaries and to handle them in a manner similar to that used in conventional structure
analysis. In this way, the treatment of such a problem becomes very concise, and the computational cost
can be significantly reduced. Furthermore, the topology optimization is implemented using a modified
SIMP method to derive the most suitable optimum layout. For alleviating the numerical deficiency at
the interfaces, appropriate filtering schemes are adopted. Finally, several numerical examples are pre-
sented to verify the validity of the proposed method.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

In a variety of engineering problems, several types of research
focus on deriving optimum layouts of structures at a conceptual
level of the design process using topology optimization. However,
in several practical applications, the entire system is composed of
several subsystems that are modeled separately to construct an
efficient system such as local refinement for the purpose of each
problem. Moreover, when performing a variety of nonlinear analy-
sis including multi-material, multi-physics, as well as contact
problems, the finite element models should be discretized inde-
pendently. In these circumstances, the analysis and optimization
might be performed individually, and the results are then collated.
Because of this, imposing precise boundary conditions appropri-
ately along the interface is an important factor that significantly
affects the performance of the analysis and optimization.

Recently, several types of research have been conducted to treat
these complicated systems. In a fluid-structure interaction prob-
lem that is coupled with various governing equations, the topology
optimization for a solid structure is conducted using monolithic
formulation [1]. As for the contact problems, topology optimization
for frictionless contact is performed while considering the

geometric nonlinear effect [2,3]. However, the previous researches
have been performed on single structures. In order to proceed with
topology optimization for structures consisting of more than one
structure, a study was carried out on a system with two elastic
subsystems [4]. In this study, a node-to-node contact algorithm
is formulated to connect two subsystems after coinciding the inter-
face nodes. However, this method is limited to the problems with
matching meshes only. Therefore, in order to address a greater
number of general engineering problems, this paper focuses on a
new approach that derives an optimum result for systems with dis-
similar interfaces.

For treating a system with dissimilar interfaces, the mortar
method is the most popular approach that can be used to impose
interface compatibility conditions. The method enforces the inter-
face conditions using Lagrange multipliers that act as interface
forces or fluxes in a variational sense. Depending on how the inter-
face compatibility conditions are defined, the mortar method is
categorized into two types: classical Lagrange multipliers (CLM)
and localized Lagrange multipliers (LLM) versions. In the CLM
method, the interface conditions are imposed in a weak form using
Lagrange multipliers introduced as independent third variables [5–
7]. The weak imposition can be used to derive reasonable results
even when the interfaces are deformed [8]. From a computational
point of view, the CLM method yields two types of linear systems
of equations: a linear system with Lagrange multipliers [5–8] and a
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linear system without Lagrange multipliers [9,10]. For numerical
efficiency and accuracy, the latter is preferred owing to the charac-
teristics of the total system equations. For confirming the numeri-
cal features of the systems, several efficient linear solvers are
studied with verification examples [11,12]. As with the CLM
method, the LLM method has been studied for various interface
problems [13–16]. A distinctive characteristic of the LLM compar-
ing with the CLM is the creation of a fictitious frame domain
among the interface boundaries for imposing a unique set of con-
straints [14]. Owing to the key features of the LLM method, it has
found application not only in interface and contact problems pos-
sessing same constitutive models but also in a host of coupled-field
problems such as fluid-structure interaction problems [17–19].

The topology optimization derives an optimal layout by elimi-
nating unnecessary parts of the structure [20]. The basic procedure
involves the elimination of some areas of the design domain that
have no contributions for optimizing the objective function and
satisfying the constraints. In other words, the optimal layout of
the topology optimization should have the essential parts of the
desired performance [20,21]. Therefore, the creative and aesthetic
solution can be obtained at a conceptual level of the design pro-
cess. Moreover, it is convenient to formulate and implement [22].
For these reasons, topology optimization has been developed as a
strong, powerful, and versatile tool for various design applications
since the late 1980s [23]. The most widely used algorithm is the
solid isotropic material with penalization (SIMP) method
[20,22,24]. The relative density is defined at each element as a
design variable for expressing material properties during analysis
and optimization [22]. However, the SIMP method unfortunately
has several numerical shortcomings such as checkerboard pattern,
mesh-dependency, and intermediate density. In order to overcome
these issues, several schemes including a perimeter constraint, gra-
dient constraint, and filtering techniques have been proposed [25].
Among these, the filtering scheme is commonly applied as it
results in appropriate optimum solutions as compared to other
techniques. For adopting the filtering schemes more easily and effi-
ciently, the modified SIMP method is developed by employing a
refined interpolation scheme that is independent of the penaliza-
tion factor [26].

The rest of this paper is organized as follows. Section 2 provides
an overview of the conventional mortar methods including the
classical and localized versions. Based on the conventional meth-
ods, the condensed mortar method is proposed by eliminating
the Lagrange multipliers and overlapped interface displacements
to modify the system equation as a conventional structural system.
In Section 3, the formulations for the modified SIMP method are
introduced. Then, a new topology optimization methodology is
adopted to obtain optimal solutions for structures containing dis-
similar interfaces. In order to verify the validity of this approach,
a simple example is solved for comparison with the results
obtained using a commercial software program, ABAQUS. In Sec-
tion 4, several numerical examples comprising two substructures
are used to verify the accuracy and effectiveness of the present
method. Finally, the concluding remarks are presented in Section 5.

2. Condensed mortar method

This section presents a streamlined review for the conventional
mortar methods including classical and localized versions for con-
necting boundaries along a dissimilar interface. Then, the conven-
tional method is modified to obtain the proposed condensed
mortar method.

A simple interface patch test problem that consists of two elas-
tic bodies, as depicted in Fig. 1, is considered to demonstrate the
characteristics of the mortar and condensed mortar method.

Schematics of the mortar methods for CLM and LLM are shown
in Fig. 1(b) and (c), respectively. As shown in Fig. 1(c), the LLM
method is implemented by considering a fictitious frame domain
to impose the interface conditions properly.

2.1. Review of the conventional mortar method

Depending on how the interface compatibility conditions and
Lagrange multipliers are defined, the mortar method is divided
into the CLM and LLM methods. The CLM method is the most pop-
ular approach for treating interface conditions by introducing the
Lagrange multipliers as the interface pressure shown in Fig. 1(b).
In the LLM method, a fictitious frame is introduced and the inter-
face condition is imposed indirectly using the frame shown in
Fig. 1(c) [13]. Using the Lagrange multipliers, a subsystem is con-
nected to an adjacent subsystem while satisfying the interface
conditions.

When the finite element approaches are adopted, the hybrid
form of a total energy functional has to be defined for deriving
the formulations of the mortar method [14].

PTPE ¼
XN
X¼1

PX
PE �Pc ð1Þ

where PTPE is the total energy, Pc is the interface potential energy,
N is the number of subdomains (in Fig. 1, N ¼ 2), and PX

PE is the
potential energy for each subdomain X in which it is given as

PX
PE ¼

Z
X
½tðuÞ � uif i�dX�

Z
@X

uitidC: ð2Þ

In Eq. (2), the potential energy comprises the internal energy
expressed in terms of the strain energy density function tðuÞ,
which is given by

tðuÞ ¼ 1
2
Dijkleijekl; eij ¼ 1

2
ðui;j þ uj;iÞ ð3Þ

and the external energy is obtained from the body force f and sur-
face traction t, where u is a displacement field, Dijkl is the fourth-
order elastic Young’s modulus, the conventional summation rule
is in effect, and the comma represents partial derivatives.

2.1.1. Method of Classical Lagrange Multipliers (CLM)
When the CLMmethod is applied, the interface potential energy

Pc is defined in order to impose the interface compatibility condi-
tion using Lagrange multipliers as shown in Eq. (4).

Pc ¼
Z
CI

kTðuð1Þ � uð2ÞÞdC ð4Þ

where CI represents the interface boundary, k the Lagrange multi-
pliers, and uð1Þ and uð2Þ the displacement field for each subdomain,
respectively. If the meshes of each subdomain along the interface do
not completely coincide with the CI , gaps are created. In that case,
the interface compatibility condition is imposed after projecting the
uð1Þ and uð2Þ on the CI.

On substituting Eq. (4) into the total energy functional (1) and
considering the first variation to the functional (1) for minimizing
total potential energy, a matrix form of the total system for the
CLM can be obtained as follows:
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