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a b s t r a c t

We develop a real-coded constrained genetic algorithm (GA) and assess its performance for the case of
selected classical optimisation problems. The proposed GA uses a roulette selection method, BLX-a cross-
over operation, non-uniform mutation along with single elitist selection at every generation. The GA is
then applied, in conjunction with the finite element (FE) method, to optimise the damping response of
a laminate comprising unidirectional composite laminae and viscoelastic damping layers. Modal loss fac-
tors are maximised against the constraints of given structural stiffness and mass.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Fibre reinforced polymers (FRPs) are being increasingly used in
automotive and aerospace sector due to their superior specific
stiffness, strength and damping. These materials can be tailored
by adjusting volume fractions of the constituents, layer thickness
and stacking sequence. Recently, the issue of accurate numerical
prediction of the stiffness and damping properties of the FRPs
has been addressed at both ply [1–4] and laminate [5] level. In cer-
tain applications however, the inherent damping of composites
plies is not sufficient and viscoelastic damping inserts are used
to increase structural damping; this is typically done placing a
compliant damping layer between relatively stiffer composite
plies, to induce shear deformation in the soft material, thereby dis-
sipating energy. The poor stiffness of damping layers, with density
comparable to that of composite plies, may degrade the specific
structural stiffness of the laminate.

The effectiveness of damping layers also depends on their thick-
ness and location in a given laminate. Several authors have studied
the optimal location of viscoelastic layers for maximum damping
in composite laminates, using analytical or numerical techniques
[6–15]. The task can be formulated as a constrained optimization
problem, where the objective is to maximize the damping capacity
of a laminate, having certain constraints on mass, stiffness and
load-carrying capacity [7,15]; single- and multi-objective algo-
rithms have been published (e.g. [11,16]). The effectiveness of opti-

misation algorithms to maximise the damping of structures made
from laminates also depends on the type of objective function; dif-
ferent objective functions have been considered in the literature:
maximum modal loss factors or their sums [6,8], minimum deflec-
tion at resonant frequencies [12], minimum vibrational energy
[13], among others. Several studies have also explored the use of
discontinuous damping surface patches to increase the modal
damping capacity of the laminate [8,17].

The design space of laminated composite structures has a high
number of dimensions of both discrete and continuous nature.
Classical non-linear programming techniques are unsuited for such
non-convex search spaces given the fact they are local search
methods that have a tendency to get stuck in the local extrema.
Typically, such problems are better handled by techniques belong-
ing to the class of evolutionary algorithms, most popular of which
are genetic algorithms (GAs). GAs are inspired by the natural evo-
lutionary principles of selection, crossover, mutation and evolu-
tion; for a comprehensive discussion of GAs the readers are
referred to [18,19]. The idea is to select the best performing candi-
date solutions in a certain population and then combine their
genomic information to possibly create children with better per-
formance; GAs are stochastic search-based approaches which
makes them efficient over other methods. Several authors have
applied GAs to optimize damping in FRP laminates. Zheng et al.
[13,20] optimized thickness and location of a viscous patch for
the case of a simply-supported beam; Xie et al. [12] minimized
structural displacements at resonant frequencies by tailoring the
thicknesses of the constituent plies. Montemurro et al. [7] per-
formed damping optimization of a hybrid laminate consisting of

https://doi.org/10.1016/j.compstruc.2018.01.005
0045-7949/� 2018 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail address: v.tagarielli@imperial.ac.uk (V.L. Tagarielli).

Computers and Structures 198 (2018) 51–60

Contents lists available at ScienceDirect

Computers and Structures

journal homepage: www.elsevier .com/locate /compstruc

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compstruc.2018.01.005&domain=pdf
https://doi.org/10.1016/j.compstruc.2018.01.005
mailto:v.tagarielli@imperial.ac.uk
https://doi.org/10.1016/j.compstruc.2018.01.005
http://www.sciencedirect.com/science/journal/00457949
http://www.elsevier.com/locate/compstruc


transversely isotropic FRP plies and isotropic viscoelastic damping
plies. The design variables considered in this study were ply num-
ber, laminate sequence and ply thickness. More recently, Xu et al.
[8] performed multi-objective design optimization of damping in
a laminate using FE analysis with a modified NSGA-II algorithm
[21]. Most of the works dealing with optimization of FRP laminates
are based on binary-coded GAs, which are not efficient in dealing
with real-valued design variables [22]. Moreover, the inherent
material damping due to the fibre composites has been largely
ignored in all studies.

In this paper we develop a real-coded GA (i.e. a GA using real
number representation for the candidate solutions) and test its
effectiveness in dealing with non-convex benchmark optimization
problems, comparing to selected state-of-the-art evolutionary
algorithms. The algorithm is then employed to maximise the
damping of a cantilever beam, with constraints on the structural
mass and stiffness; the design variables are ply thickness and
stacking sequence. This is done in conjunction with FE simulations,
in which the response of a cantilever beam is simulated in detail,
including all non-linearities as well as the anisotropic, viscoelastic
response of all constituent materials.

The outline of the paper is as follows: in Section 2 we define the
optimization problem and give details of the proposed real-coded
GA. In Section 3 we test the algorithm in selected benchmark prob-
lems and in Section 4 we apply the proposed GA to the case of lay-
ered composites with damping layers.

2. Optimisation algorithm

2.1. Constrained optimization problem

A single-objective constrained optimization problem can be for-
mulated as the minimization problem

min f ð x!Þ; subject to

gjð x!Þ 6 0; j ¼ 1; . . . ; l

hjð x!Þ ¼ 0; j ¼ lþ 1; . . . ;m
pj 6 xj 6 qj; j ¼ 1; . . . ; n

8><
>:

ð1Þ

where x!¼ ½x1; x2; . . . ; xn�T is the n-dimensional solution vector; the
function is subjected to l inequality constraints (gj) and m� l equal-
ity constraints, represented by hj. In practice the equality con-
straints are difficult to handle and are usually converted to
inequality constraints by allowing a small tolerance e, i.e.

jhjð x!Þj � e 6 0: ð2Þ
Penalty based methods [18] are often used in optimization algo-

rithms to handle constraints, which can be linear or non-linear in
nature. This approach transforms a constrained optimisation prob-
lem into an unconstrained one, by suitable modification of the
original objective function f ð x!Þ: The ‘penalised’ objective function
f pð x!Þ is constructed as

f pð x!Þ ¼

f ð x!Þ if gið x!Þ 6 0 and hjð x!Þ ¼ 0

f ð x!Þ þ
Xl

i¼1

ciGið x!Þ if gið x!Þ > 0 and hjð x!Þ ¼ 0

f ð x!Þ þ
Xm
j¼lþ1

djHjð x!Þ if gið x!Þ 6 0 and hjð x!Þ – 0

f ð x!Þ þ
Xl

i¼1

ciGið x!Þ þ
Xm
j¼lþ1

djHjð x!Þ if gið x!Þ > 0 and hjð x!Þ – 0

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð3Þ

Gið x!Þ ¼ maxf0; gið x!Þg; i ¼ 1; . . . ; l

Hjð x!Þ ¼ maxf0;hjð x!Þg; j ¼ lþ 1; . . . ;m
ð4Þ

The selection of the penalization coefficients ci and dj is difficult,
as high penalty coefficients limits the accuracy in proximity of the
constraints while low coefficients results in a large number of
iterations.

2.2. Genetic algorithm

Encoding of the candidate solutions is essential for an efficient
GA search process. Traditionally, the candidate solutions (chromo-
somes) are coded using binary representations due to simplicity of
implementation. However, the binary representation has limita-
tions when dealing with continuous search spaces, where the size
of binary strings can grow in length, resulting in storage and
manipulation problems [23]. Binary coding also suffers from the
‘‘Hamming Cliffs” problem [22]. The use of real-coding is more nat-
ural for real-valued design variables, i.e. continuous search spaces,
as it substantially simplifies the algorithm, resulting in higher
efficiency.

Genetic algorithms are unconstrained optimization techniques,
and constraints are imposed using penalty-based methods [7,24]
or via multi-objective optimization approach [11,16]. In this study
we use a recently proposed penalty-based method, referred to as
automatic dynamic penalization strategy [25].

2.3. Description of proposed GA

In this study we develop a real-coded GA with a ‘roulette’ selec-
tion method, BLX-0.5 crossover operator [26] and non-uniform
mutation (NUM) operator proposed by Michalewicz [19]. The
choice of GA operators are based on findings of Herrera et al.
[22], where several types of real-coded GA operators were com-
pared, concluding that the BLX-0.5 and NUM gave the best perfor-
mance. We briefly describe these operators below.

2.3.1. BLX-a crossover operator
For two parent candidate solutions with n design variables,

x!i ¼ ½xi;1; xi;2; . . . ; xi;n� and x!j ¼ ½xj;1; xj;2; . . . ; xj;n� selected from a

population of size PN at generation t, Xt ¼ ½ x!1; x
!

2; . . . ; x
!

PN �, the
BLX-a operator generates the k-th component of a new offspring
x!z belonging to the next generation, i.e. to the population at
time t þ 1, Xtþ1. The k-th component of x!z is a uniform random
scalar in the range ½minðxi;k; xj;kÞ � aI;maxðxi;k; xj;kÞ þ aI�, where
I defines the distance between parent candidates given by
I ¼ maxðxi;k; xj;kÞ �minðxi;k; xj;kÞ and a is a user defined parameter.

The effectiveness of the BLX-a is in its ability to search in a
space domain not necessarily bounded by that of the parents; in
addition, the GA is self-adaptive, since the search space depends
on the distance between the parents. The choice of the parameter
a is crucial as it quantitatively defines the search domain. In this
study we use a ¼ 0:5, based on the findings in Herrera et al. [22].

For the case of child solutions violating the design variable
bounds, the values of the design variables are forced to the value
of the nearest bound, to ensure that the search stays within the
desired space.

2.3.2. Non-uniform mutation operator
The NUM operator, as the BLX-a operator, possesses self-

adaptive capabilities; this algorithm reduces the range of the
allowable mutations with increasing generation number t, allow-
ing for larger mutations at small t and fine-tuning towards the
end of the optimisation problem. This allows for efficient search
throughout the allowable search space but it ensures that good
solutions are not lost at later generations. The operator mutates
the k-th component of a certain parent x!i as

52 M.V. Pathan et al. / Computers and Structures 198 (2018) 51–60



Download English Version:

https://daneshyari.com/en/article/6924191

Download Persian Version:

https://daneshyari.com/article/6924191

Daneshyari.com

https://daneshyari.com/en/article/6924191
https://daneshyari.com/article/6924191
https://daneshyari.com

