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a b s t r a c t

The wave and finite element method (WFEM) is an efficient numerical tool for analysing wave propaga-
tion characteristics and forced response at intermediate and high frequencies. In this work, we introduce
free-interface component modal synthesis (CMS) methods into WFEM to accelerate the calculation while
maintaining the accuracy. Several free-interface CMS methods with different approximations of the
residual effects are implemented and compared. A new eigenvalue scheme based on the dynamic com-
pliance matrix is proposed. A periodic open thin-wall structure is considered as an application for which
both free-wave characteristics and forced responses are computed. Aspects such as accuracy, efficiency,
and convergence of the proposed method are discussed and compared with those of the Craig-Bampton
fixed-interface CMS method. The methods and main findings are further verified by using another more
complex periodic structure. Among the implemented models, the minimummodel size is achieved by the
exact CMS method. The exact CMS method only requires the modes below the maximum analysing fre-
quency, thereby reducing the model size of the open thin-wall structure from 4416 to 16. The most
numerically efficient model for WFEM is MacNeal’s CMS method, where the CPU time of free-wave anal-
ysis can be reduced by 97% for the open thin-wall structure.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Periodic structures are extensively encountered in many fields
of engineering. Some such structures are as those involved in chas-
sis frames and aircraft fuselages (one-dimensional), or honeycomb
sandwiches, stiffened panels, and beam lattices (two-dimensional).
These structures are often optimized to provide high structural
integrity with low weight. The vibro-acoustic characteristics are
therefore of utmost significance for these structures to avoid prob-
lems related to fatigue and noise, especially at intermediate and
high frequencies where the modal density is high. Several methods
[1–3] were proposed to analyse the dynamics of structures. Exam-
ples of these methods are the statistical energy analysis, finite ele-
ment method, and wave-based methods. Among them, a wave-
based method termed the wave and finite element method
(WFEM) has gained increasing research interest [4,5]. The main
feature of the WFEM is the introduction of the FE model of only
one unit cell into the general principle of periodic structures [6],
instead of considering the entire FE model of a whole periodic

structure. This allows the analysis of complex engineering periodic
structures with relative ease and low computational cost. The
method has been applied to analyse pipes [7], curved members
[8], thin-wall structures [9], piezoelectric composites [10], and
built-up structures [11].

The WFEM is centred on the wave basis formed by the eigenval-
ues and eigenvectors of the transfer matrix of one unit cell. Because
a FE unit cell model is used, a refined mesh is necessary to predict
the wave characteristics well, as reported by Droz et al. [12]. How-
ever, the use of large FE models worsens the existing numerical
problems [13]. All the existing eigenvalue schemes are based on
the condensed dynamic stiffness matrix (DSM), which is obtained
by eliminating all the inner DOFs of a unit cell. A large sparse
matrix corresponding to the inner DOFs is inverted, and it may
induce numerical errors into the condensed DSM; these errors can-
not be reduced by using an appropriate eigenvalue scheme. More-
over, the condensed DSM is frequency-dependent, implying that
the inverse of a big sparse matrix is required at each frequency.
This could increase the computational cost drastically when a large
FE model is used. On the other hand, the size of the eigenvalue
problem is directly related to the number of DOFs at the bound-
aries. The use of a large FE model with more boundary DOFs will
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also increase the computational cost for solving the eigenvalue
problem.

To accelerate the calculation of the wave basis and to mitigate
the numerical error, reduced models were proposed. Literature
reports two main strategies to reduce a unit cell model for WFEM.
In this paper, we label them as wave-based [14,12] and mode-
based models [11,15,16]. The former strategy is preferable for uni-
form structures with complex cross-sectional profiles, while the
latter is preferable for periodic structures with numerous inner
DOFs.

The wave-based strategy employs a subset of wave shapes at
some pre-selected frequencies to express the cross-sectional defor-
mation at the present frequency. By adopting this strategy, the
DOFs at the boundaries and the magnitude of the eigenvalue prob-
lem were reduced. To start this method, however the wave solu-
tions at the pre-selected frequencies should be computed using
the full FE unit cell model, which increases the implementation
difficulty.

Alternatively for the mode-based strategy, a unit cell model is
reconstructed by component modal synthesis (CMS) before the
WFEM procedure, so that the size of the eigenvalue problem is
reduced. CMS approaches are well established [17,18] and it has
already been used in combination with the periodic structure the-
ory [19] to enhance the statistic energy analysis method. For
WFEM, Mencik [15] proposed the use of the Craig-Bampton CMS
method [20] for unit cell modelling. Zhou et al. [16,21] applied
the method for two-dimensional structures and experimentally
validated the results. Fan et al. [11] extended this method to struc-
tures with local dampers or piezoelectric shunts. The accuracy of
this strategy is ensured by the principle of modal superposition.
Further, the accuracy can be improved by retaining more modes.
It is intuitive to combine the Craig-Bampton method with WFEM
because the boundary DOFs at which the periodic boundary condi-
tions apply are retained in the physical domain. However, it is
unclear whether the free-interface CMS method, another widely
used CMSmethod, can also be applied to WFEM. If yes, such a com-
bination can be used as an alternative way to build reduced models
for periodic structures. In addition, it is easier to include experi-
mental data into the reduced model for the free-interface CMS
approach.

In this paper, we explore the use of the free-interface CMS
methods with the WFEM. The basic idea of free-interface CMS
methods is to use low-order free modes and residual effects to
approximate the dynamic compliance matrix. Thus, a new eigen-
value scheme based on the force vector is proposed (Section 3.3),
and the results can be easily recovered to the eigen-solutions of
the transfer matrix. Free-interface methods proposed by Hou
[22], MacNeal [23], Rubin [24], and Qiu et al. [25] were imple-
mented (Sections 3.1 and 3.2). They have different orders of accu-
racy for the residual effects from zero order to infinite. As
references, the full WFEM (Section 2.1) and WFEM with the
Craig-Bampton method were also implemented. A periodic thin-
wall structure with complex wave characteristics was considered
as the application (Section 4). The free-wave results obtained by
the implemented methods were compared to illustrate the effi-
ciency, convergence, and accuracy of the methods (Section 4.1).
For the forced response analysis, the accuracy on the strong
evanescentwaves and their influenceswere discussed (Section 4.2).
Finally, the methods and their efficiency were further verified by
considering a more complex thin-wall structure.

2. Framework of the wave and finite element method (WFEM)

For the sake of clarity, we briefly review the WFEM for the free
wave and forced response analysis. Obtaining the finite element

description of a single unit cell is the starting point of WFEM. A
unit cell is the smallest repetitive substructure of a periodic struc-
ture, as shown in Fig. 1. By imposing the periodic boundary condi-
tions derived from the Bloch theorem, the homogeneous problem
of the periodic structure results in an eigenvalue problem, whose
scheme can be formulated in many different ways. The solutions
yield wavenumbers and associated wave shapes at each frequency,
revealing how free waves can travel in a structure. Additionally,
the obtained left and right eigenvectors define the wave basis
[26]. The wave basis has many useful properties that enable diag-
onalisation of the transfer matrix by a reduced set of left and right
eigenvectors [27,28]. The forced response of the structure subject
to external forces can then be obtained by wave decomposition
and superposition [13,29].

2.1. WFEM with full FE model of a unit cell

In the context of free-wave analysis, external loads are not con-
sidered. After isolating a unit cell from the periodic structure, the
discrete governing equations can be obtained by the existing FE
tools:
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where q is the vector of nodal displacement; f is the force vector; a
superimposed dot denotes the derivative with respect to time; and
M; C, and K refer to the mass, damping, and stiffness matrices
respectively. Subscripts L;R, and I, respectively, denote the left-
side, right-side, and internal DOFs as illustrated in Fig. 1. With
regard to harmonic motions, the dynamic equations of a unit cell
at frequency x are given by

~Dq ¼ �x2Mþ jxCþ K
� �

q ¼ f ð2Þ

where ~D is the dynamic stiffness matrix.
According to the Bloch theorem, when a free wave travels in the

periodic structure, the following conditions should be satisfied:

qR ¼ kqL ð3Þ

fR ¼ �kfL ð4Þ
where k ¼ e�jkD describes the amplitude and phase changes when
the wave travels from the left side to the right side of a unit cell.
k is the wavenumber, and D is the length of the unit cell. The minus
sign in Eq. (4) is induced by the equilibrium of the internal forces.

The objective of the free wave analysis is to find the nodal dis-

placement vector q ¼ qT
L qT

R qT
I

� �T associated with a wavenum-
ber k at frequency x to satisfy Eqs. (1), (3) and (4). After
eliminating all the internal DOFs qI from Eq. (1) at frequency x,
the condensed dynamic stiffness matrix of the unit cell is written
as follows:

DLL DLR

DRL DRR

� �
qL

qR

� �
¼ fL

fR

� �
ð5Þ

where

DLL DLR

DRL DRR

� �
¼

~DLL
~DLR

~DRL
~DRR

" #
�

~DLI

~DRI

" #
~D�1
II

~DIL
~DIR

� 	 ð6Þ

Substituting condition (3) into Eq. (5) to eliminate fL and fR, and
considering Eq. (4), it comes to the eigenvalue problem
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