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a b s t r a c t

A simple and efficient subinterval decomposition analysis method is proposed to evaluate the lower and
upper bounds of structural responses with large uncertain parameters. The proposed method decom-
poses the original structural system with multi-dimensional interval parameters into multiple one-
dimensional subsystems. Every subsystem has only one interval parameter and the other interval param-
eters are substituted by their midpoint values. By dividing the interval parameter of each subsystem into
several subintervals with small uncertainty, the lower and upper bounds of the system are approximately
calculated by only a few subinterval combinational analyses instead of all possible combinations of
subintervals. Finally, the accuracy and efficiency of the proposed method compared with the first-
order Taylor method, Chebyshev interval method and traditional subinterval method are verified by
several numerical examples and applications.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Uncertainty factors are ubiquitous in practical engineering
problems and they are generally categorized into two parts. The
first typical one is our well-known aleatory uncertainty which is
the inner characteristic of a specific system and is impossible to
be deleted or controlled. Another one is commonly known as epis-
temic uncertainty or subjective uncertainty. Specifically, this
uncertainty occurs because we lack of some relevant information
or knowledge to construct a precise model to measure the uncer-
tain parameter. This uncertainty or imprecision could be gradually
reduced with gaining more information or experimental data.
Meanwhile, various uncertainty quantification models have been
developed and mainly include three types. The first one is the
probability model expressed by random variable [1–4] which
obeys a given probability distribution requiring sufficient samples
to be precisely constructed. The second one is fuzzy model
expressed by the fuzzy variable which obeys a kind of membership
function [5,6] and the last one is convex model including interval
model [7–10].

The interval model only requires a small number of samples to
be constructed which is well suitable for practical engineering

problems. The interval analysis method was firstly proposed by
Moore [11] and subsequently many improved interval analysis
methods and their applications have been developed [12–14].
The interval arithmetic for interval analysis is the simplest
approach to calculate the bounds of response function. However,
it always leads to overestimation due to dependency assumption
[15,16]. For this shortcoming, Hansen [17] proposed the general-
ized interval arithmetic to obtain a sharper boundary response.
Elishakoff et al. [18–20] and Muscolino and sofi [21–23] developed
a parameterized interval analysis (PIA) and an improved interval
analysis by extra unitary interval (IIA-EUI) to achieve the sharper
bounds than those calculated by the traditional interval analysis
method, respectively. Santoro et al. [24] combined the PIA and
the IIA-EUI to solve the set of governing algebraic interval equa-
tions. Based on the extra unitary interval, Sofi and Romeo [25]
developed an improved interval finite element method to address
the static analysis of linear-elastic structure with interval parame-
ters. Jiang et al. [26] proposed a new interval arithmetic method
considering the correlation between any two interval parameters
which can significantly alleviated the overestimation. Further-
more, the affine arithmetic [27,28] was introduced as improve-
ments of the traditional interval analysis to overcome this issue.

At the same time, Chen et al. [29], Qiu and Wang [30] and Qiu
et al. [31] employed the interval perturbation or Taylor series
expansion technique to evaluate the dynamic response of the non-
linear system. Sevillano et al. [32] developed the modal interval
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method to estimate damage structural problems with interval
parameters. Wang et al. [33] employed the first order Taylor
expansion method to calculate the structural response with small
measurement data. Gao et al. [34,35] presented the interval factor
method to calculate the dynamic responses of different trusses.
However, it is required that the uncertainties are synchronized
based on interval factor and the obtained responses may be rela-
tively conservative. Fujita and Takewaki [36] proposed an
enhanced and efficient interval analysis within the framework of
an updated second order Taylor series expansion. Meanwhile,
Wu et al. [37,38] utilized the Chebyshev interval method to calcu-
late the boundary responses of the nonlinear dynamic systems.
This method promoted the development of the interval analysis
for solving the nonlinear function at some degree, but its computa-
tional cost is very high when the dimension of uncertain parameter
is relatively large.

Most of the aforementioned works are mainly limited to the
small uncertainty problems and the upper and lower bounds of
structures are evaluated based on the first order perturbation or
Taylor series expansion techniques which require calculating
the partial derivatives of system function. Generally, these meth-
ods are difficult to predict the responses of structures with large
uncertainty parameters. To address this issue, the subinterval
analysis method, which divides the large uncertainty parameter
into several subintervals with small uncertainty level, is utilized
as a powerful and efficient tool to evaluate bounds of response
function. Xia et al. [39] extended the interval and subinterval per-
turbation methods to solve the frequency responses of a
structural-acoustic system. Wang et al. [40] and Wang and Qiu
[41] employed subinterval analysis with high-order terms of Neu-
mann series to solve the heat conduction problems with large
uncertainty parameters. Chen et al. [42] applied the subinterval
analysis technique with interval homogenization-based method
to estimate of the effective elastic tensor for microscopic material
properties with interval uncertainty. However, every possible
combination of subintervals requires conducting two interval
analyses, so that the computational cost of existing subinterval
analysis increases exponentially and is very huge when the num-
ber of interval parameters increases to a relatively large constant.
This issue hinders the subinterval analysis method from widely
applying in uncertain structures with high-dimensional interval
parameters. In this paper, a subinterval decomposition analysis
method is developed to evaluate the upper and lower bounds of
uncertain structures with large uncertainty parameters. The
proposed method could deal with uncertain structures with
high-dimensional and large uncertain parameters. The partial
derivatives of response function are not required to be evaluated
in the proposed method, which, however, are necessary to be
calculated in the Taylor series expansion and the traditional
subinterval method.

The remainders of this paper are organized as follows. Section 2
introduces the statement of uncertain problem and relevant
concepts. The details of proposed algorithm are introduced in
Section 3. Three numerical examples and three engineering appli-
cations are analyzed to verify the effectiveness of the proposed
method in Section 4 and Section 5, respectively. Finally, Section 6
gives the conclusions of this paper.

2. Statement of the problem

Owing to the existing interval parameter vector
XI ¼ ðXI

1;X
I
2; . . . ;X

I
nÞ 2 IðRnÞ, the response of a specific system will

be an interval and the interval response YI can be formulated as:

YI ¼ f ðXIÞ ð1Þ

where f ð�Þ is the objective function of a structure or system. The
lower and upper bounds of the uncertain parameter
Xi; i ¼ 1;2; . . . ;n are denoted as XL

i and XU
i , respectively; n is the

number of uncertain parameter. The superscripts I, L and U denote
the interval, lower and upper bounds of uncertain parameter,
respectively.

The interval parameter vector XI
i can be written as [16,43]:

XI
i ¼ XC

i þ ½�1;1�XW
i ð2Þ

where the superscripts C and W are the midpoint and radius of
uncertain parameter, respectively. The midpoint and radius of
uncertain parameter XI

i are calculated by:

XC
i ¼ XU

i þ XL
i

2
;XW

i ¼ XU
i � XL

i

2
ð3Þ

Meanwhile, the uncertain vector XI can be also rewritten as:

XI ¼ XC þ dX ð4Þ
where dX 2 ½�1;1�XW ; dXi 2 ½�1;1�XW

i ; i ¼ 1;2; . . . ;n. The uncer-
tainty level c of the interval parameter Xi is defined as:

c ¼ XW
i

jXC
i j
� 100% ð5Þ

For the interval parameter Xi with large uncertainty level, it is
divided into several subintervals with small uncertainty level c.
The number of subintervals for the uncertain parameter Xi is mi

and the length or width of each subinterval DXi is calculated by:

DXi ¼ XU
i � XL

i

mi
ð6Þ

Then the traditional subinterval analysis is conducted in every com-
bination of subintervals to calculate the response of a structure [44].
However, the computational cost of traditional subinterval analysis
is very high resulting in unaffordable computational cost for com-
plex structures when the number of uncertain parameter is rela-
tively large. Hence, a subinterval decomposition analysis is
developed to calculate the response of structures with large uncer-
tainty parameters.

3. A subinterval decomposition analysis method

Assumed that the uncertainty level of the interval
parameters are relatively small, the objective function f ðXÞ can
be approximated in the uncertainty domain by the second-
order Taylor expansion at the midpoint of uncertain parameter
vector XC:

f ðXÞ ¼ f ðXCÞ þ GTðXCÞdXþ 1
2
dXTHTðXCÞdX ð7Þ

where GT and HT are the gradient vector and the Hessian matrix,
respectively. The matrix GT and HT are expressed as:

GT ¼ @f
@X1

;
@f
@X2

; . . . ;
@f
@Xn

� �
ð8Þ

HT ¼

@2f
@2X1

@2 f
@X1@X2

� � � @2 f
@X1@Xn

@2f
@X2@X1

@2 f
@2X2

� � � @2 f
@X2@Xn

..

. ..
. ..

. ..
.

@2f
@Xn@X1

@2 f
@Xn@X2

� � � @2 f
@2Xn

2
66666664

3
77777775

ð9Þ

We consider X2 ¼ XC
2, X3 ¼ XC

3, . . ., Xn ¼ XC
n in Eq. (7), then f ðXÞ are

simplified as:
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