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a b s t r a c t

A distributed plasticity isogeometric frame model utilizing a layer-based discretization is formulated to
capture the plasticity growth in large-deformation frames. In our formulation, B-spline basis functions
are employed to define the deformation along the length, while a layer-based through-the-thickness dis-
cretization is adopted to capture the gradual plastification of the section. This separation of the thickness
integration from the length direction enables the full 2D yielding development to be captured while
maintaining a 1D data structure. The member-level geometrically nonlinear effects are also included.
By introducing a continuity constraint in between two patches, rigid connection between two members
is achieved in a multi-patch analysis setting. The formulation includes an adaptive analysis in which
knots are inserted based on yield locations. In comparison to conventional layer-based finite elements,
fewer degrees of freedom are needed to achieve the same level of accuracy due to the high-order smooth-
ness of B-splines. Compared to existing isogeometric beam elements, the appealing feature is its capabil-
ity of adaptively capturing the 2D spread of plasticity while maintaining a 1D data structure. The
performance of the proposed model is assessed through several numerical examples involving gradual
yielding of beams and frames under small and large deformations.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Nonlinear analysis of structural frames is important in civil
engineering for determining the load-displacement response of
structures under extreme loads. A significant amount of research
has been conducted over the past few decades to formulate
beam/frame elements that can handle material and geometric non-
linearities. Material nonlinearities are typically handled by either
lumped plasticity or distributed plasticity (i.e., layer) models [1].
The former is more computationally efficient, whereas the latter
captures the spread of plasticity in a more accurate manner. Coro-
tational formulations [2] are commonly employed to handle large
displacements. While most of the work has focused on
displacement-based formulations, recent studies have explored
force-based and mixed formulations for improved accuracy [3–8].
While offering improved accuracy and a reduction in the number
of degrees of freedom needed to model a structure, force-based
elements require computationally expensive state determination
algorithms to back-calculate stresses from nodal displacements.
Thus, while software for the analysis of structural frames is well-

developed and widely used in practice, existing displacement-
based, force-based, and mixed element formulations have consid-
erable limitations.

Isogeometric analysis (IGA) has gained significant attention in
recent years as a novel computational method that integrates
computer-aided design and analysis. It was first introduced by
Hughes et al. [9] and has been applied to the analysis of solids,
structures and fluids. IGA utilizes Non-Uniform Rational B-splines
(NURBS) to represent the geometry as well as to describe the field
variables. Thus, CAD drawings can be directly imported into finite
element analyses without converting the geometry. While IGA was
introduced to streamline the design process for complicated
geometries, it has been shown to offer improvements in analysis
for even simple geometries, as is shown in this paper. Readers
are advised to refer to the original paper by Hughes et al. for a com-
prehensive overview of IGA. We provide a very brief review of the
fundamental concepts for clarity.

In FEA, Lagrange basis functions are mapped into a single ele-
ment’s domain, and the finite elements are then assembled to
arrive at the governing equilibrium equations. In IGA, however,
the B-spline parameter space is defined over the entire patch,
which is usually comprised of multiple elements. The parameter
space is segmented into several elements by a non-decreasing set
of coordinates called a knot vector. When the knots are equally
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spaced in the parameter space, the knot vector is considered uni-
form; otherwise it is non-uniform. A B-spline basis function is
Cp�1 continuous at a single knot, and Cp�m continuous at a repeated
knot, where p is the degree of polynomial and m is the multiplicity
of knots. The B-spline basis functions are computed based on the
Cox-de Boor recursion formula [9]. With n being the natural coor-
dinate, the basis function for p = 0 is

Ni;0ðnÞ ¼
1 ni 6 n < niþ1

0 otherwise

�
ð1Þ

and for p = 1, 2, 3, . . .,

Ni;pðnÞ ¼ n� ni
niþp � ni

Ni;p�1ðnÞ þ
niþpþ1 � n

niþpþ1 � niþ1
Niþ1;p�1ðnÞ ð2Þ

The B-splines that form the basis of IGA have the following
properties:

� Partition of unity, i.e.,
Pn

i¼1Ni;pðnÞ ¼ 1
� Linear independence, i.e.,

Pn
i¼1aiNi;pðnÞ ¼ 0 () ai ¼ 0; i ¼ 1;2;

. . . ;n
� Non-negativity over the entire domain
� Local support, i.e., the basis function is non-zeros only in the
domain ½ni; niþpþ1�

A B-spline curve of polynomial degree p can then be con-
structed by the linear combination of control points Pi and its
respective basis functions:

CðnÞ ¼
Xn
i¼1

Ni;pðnÞPi ð3Þ

An advantage of IGA lies in the fact that all degrees of freedom
(DOFs) are displacement-based, meaning that elements are
rotation-free. This presents a significant opportunity for reducing
the size of stiffness matrices for large structural systems, thereby
offering significant savings in computational time. Moreover,
recent studies [10–12] on IGA have indicated that the use of NURBS
basis functions give improved accuracy over conventional finite
element analysis (FEA) for certain applications.

Isogeometric analysis of beams has been studied by a number of
researchers, and related papers cover shape optimization of beams
[13], locking-free Timoshenko beams [14–16] and Kirchhoff-Love
space rods [17]. Recent developments include the isogeometric
analysis of plane-curved beams [18], which was based on the
Timoshenko beam theory, and an isogeometric collocation method
for thin beams and plates [19]. An implicit G1 multi-patch
Kirchhoff-Love space rod was contributed by Greco and Cuomo
[20], in which the displacements of the first and last control points
within one patch were decomposed using polar coordinates to
obtain an automatic non-singular stiffness matrix. More recently,
a shear deformable isogeometric beam using a single-variable for-
mulation was developed [21].

While isogeometric analysis of beams has been shown to yield
accurate results, the majority of previous models are in the range
of elastic analysis and few have applied IGA to study the inelastic
response of beam/frame structures loaded beyond yielding. The
use of IGA for material nonlinear problems [22–26] has focused
on the study of 2D and 3D continuums, which requires a tensor
product of NURBS basis functions in multiple directions and there-
fore an excessive number of DOFs has to be introduced. Recently, a
nonlocal damage theory was applied to study the inelastic behav-
ior of beams [27]. However, this method involves in computing the
six-order derivative of the nonlocal integral operator, which is
computationally expensive. Additionally, it is not able to predict
the full plasticity growth of the section.

Within this context, we propose a layer-based distributed plas-
ticity isogeometric frame model based on the Euler-Bernoulli beam
theory. Member-level geometrically nonlinear effects are
accounted for through the inclusion of high-order strain terms.
The formulation is therefore suitable for moderate deformations
and rotations. The novelty and strength of this paper are:

� Instead of using tensor-product splines, the 1D B-spline basis
function is used to represent the parametric domain in the
length direction. The separation in integrating the layer-based
thickness direction from the length direction significantly
reduces the size of system matrices.

� Utilizing a layer-based discretization in the through-the-
thickness direction not only allows the gradual localized plasti-
fication of the section to be captured accurately, but it also
serves as a gradient-based a posteriori error estimator for adap-
tive analysis in the sense that localized yielding results in sharp
curvatures which, in turn, are a perfect indication of the need
for refinement.

� Yielding information is collected at the integration points in the
layer to guide the adaptive refinement process. Lobatto quadra-
ture rule is recommended in lieu of traditional Gaussian
quadrature because Lobatto quadrature includes integration
points at the ends of elements where plastic hinges are most
likely to occur (e.g., connections between beams and columns,
boundary condition locations, mid-span of members).

� A G1 (i.e., geometrically continuous) continuity constraint is
implemented in between patches, thereby adding rotational
stiffness at beam-column connections. The constraint equation
overlaps one control point on each side of the patch interface
and only allows for yielding in the neighborhood of connections,
rather than in the connections themselves. Therefore, the beam-
column connection maintains rigidity throughout the analysis
and plastic hinges are only allowed to form in beams and col-
umns. This is rather important from a realistic structural point
of view as yielding occurs at beam-column connections in tradi-
tional FE beam elements.

� The use of B-spline basis functions yields a rotation-free dis-
cretization, which represents great computational saving as
compared to FEA.

2. Formulation

In this section, the governing equations of the distributed plas-
ticity isogeometric frame model are presented. The model is
‘‘rotation-free” in the sense that the displaced shape is defined
entirely in terms of the horizontal and vertical translations, ui
and vi, respectively, at the n control points, as illustrated in
Fig. 1. To enable material-nonlinear analysis, the patch is dis-
cretized into m layers [28], as shown in Fig. 2. It is assumed that
the thickness of each layer is relatively small such that stress and
strain are lumped at each layer across the section.

Fig. 1. Degrees of freedom of a layer-based IGA element.
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