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a b s t r a c t

Large-scale, functional collective motions of proteins and their supra-molecular assemblies occur in a
physiological solvent environment at finite temperatures. The solution of these motions with standard
molecular dynamics algorithms is computationally hardly possible when considering macromolecules.
Much research has focused on alternative approaches that use coarse-graining to model proteins, but
mostly in vacuum. In this paper, we incorporate realistically the physical effects of solvent damping into
the finite element model of proteins. The proposed framework is based on Brownian dynamics and
shown to be effective. An important advantage of the approach is that the computational cost is not
dependent on the molecular size, which makes the long-time simulation of macromolecules possible.
Using the proposed procedure, we demonstrate the analysis of a macromolecule in solvent—an analysis
that has not been achieved before and could not be performed with a molecular dynamics algorithm.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Protein motions such as conformational changes and folding/
unfolding, generally occur in a physiological solvent, that is, a vis-
cous environment within cells. Hence, to solve for the dynamical
behavior of a protein, both the protein and the solvent should ide-
ally be modeled simultaneously, as in all-atom, explicit-solvent
molecular dynamics [1]. However, in practice, the time-
integration of the full set of governing equations of motion in
molecular dynamics is computationally hardly feasible, in particu-
lar when large length scale and long time scale motions need to be
considered with the effects of the solvent.

Hence, to simulate protein motions, various coarse-grained
modeling approaches have been developed. These models can
describe approximately important protein motions that are hardly
accessible using a molecular dynamics simulation. For example,
protein folding and unfolding have been investigated, respectively,
using the lattice models to coarse-grain the spatial discretization
[2–4] and the steered molecular dynamics procedure to coarse-
grain the time discretization [5]. Also, the elastic network model
for coarse-grained normal mode analysis has been used to solve
for the change of flexibility of proteins in large deformations [6–

9]. However, the effects of the solvent on the motion and the flex-
ibility of proteins have been ignored in the elastic network model,
and therefore, the predicted in-vacuum frequencies do not corre-
spond to realistic time-scales and the physical normal modes of
the protein [10,11].

On the other hand, the Brownian dynamics formalisms include
the solvent effects implicitly. The formalisms can be used to simu-
late biomolecular motions on a computer substantially faster than
the molecular dynamics techniques and with finite element proce-
dures [12] open an avenue to significantly advance the field. In
1978, Ermak and McCammon [13] proposed a generalized algo-
rithm to simulate the Brownian dynamics of N particles, where
hydrodynamic interactions were described by a 3N � 3N diffusion
tensor. In the Ermak-McCammon procedure, the tensor needs to be
Cholesky-decomposed [12] at each step to compute random dis-
placements, resulting in a computation-time scaling of O(N3). Over
the past four decades, researchers have developed several
approaches to reduce this computational cost [14–17] in order to
make the long time-scale Brownian dynamics simulations of large
biomolecules feasible. For example, a Chebyshev-polynomial
approach was proposed by Fixman [16] for the approximation of
the square-root of the diffusion tensor, which results in a compu-
tational cost that scales with O(N2.25) [18]. Also, as another alterna-
tive to the direct Cholesky-decomposition of the diffusion tensor,
Geyer and Winter [17] proposed the Truncated Expansion Ansatz,
which scales with O(N2) by truncating the expansion of the hydro-
dynamic multi-particle correlations as two-body contributions at
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the second order. Recently, based on Krylov subspaces, Ando and
coworkers [14] proposed a new approach to approximately com-
pute the random Brownian displacements with a computation
time scaling of O(N2). As an alternative to approximating the
square-root of the diffusion tensor in order to speed up the Brow-
nian dynamics simulations, the tensor may be also kept unchanged
for several sequential time-steps [19–22] or throughout the Brow-
nian dynamics simulation as in our own recent work on DNA
nanostructures [23].

A variety of Brownian dynamics packages are already available
for simulating the protein dynamics from SDA [24] and Browndye
[25], which use rigid-body models of proteins, to UHBD [26],
BD_Box [27], and Brownmove [28], which use flexible models.
Here, coarse-grained Brownian dynamics simulations have been
used to analyze protein motions by employing bead models [29–
31]. However, these models are complicated, and more impor-
tantly, they lead to bead overlapping [32], require volume and vis-
cosity corrections [33,34], and ignore the presence of protein
atoms between bead pairs [35]. Additionally, although solvent fric-
tion takes place on the surface of proteins [36], the bead models
used in the Brownian dynamics simulations assume that the fric-
tional forces act at the centers of the a-carbon atoms (representa-
tive atoms in the protein) of amino acids which are the building
blocks of proteins.

Here, we propose a novel framework of finite element proce-
dures for the analysis of proteins. In this framework we model
the protein and solvent environment more realistically with the
frictional forces applied directly on the protein surface and without
any overlapping and any correction for the volume and viscosity.
The friction matrix due to the solvent damping is computed by
embedding a protein in a Stokes fluid and establishing an influence
matrix. Due to the specific physics, we do not solve a nonlinear
fluid-structure interaction problem, like performed in many other
fields, see for example [12,37,38]. The interaction matrix is
obtained as usual in finite element analyses [12,39], but of course
with the specific conditions encountered in the case here consid-
ered, as detailed below. The computational cost to obtain the fric-
tion matrix for the Brownian dynamics simulation using ADINA
version 9.3 (ADINA R&D, Inc, Watertown, MA, USA) [40] is quite
reasonable.

In the following sections, we first discuss how the stiffness,
mass, and friction matrices are obtained for the Brownian
dynamics simulation using the finite element method, and show
how to calculate the diffusion coefficients, which define the
translational and rotational mobility of proteins in the solvent,
from the friction matrix. Then, we give results obtained using
the proposed method considering a simple case for which
analytical solutions are available, and compare results for actual
proteins with experimental data. Diffusion coefficients calculated
for 10 proteins of various molecular weights, ranging from 7 kDa
to 233 kDa (with 1 kDa = 1 kilodalton = 1:6605402� 10�21 g) are
provided. We also give more detailed results for the proteins
Taq polymerase and Lysozyme obtained using our Brownian
dynamics, finite element simulation framework. These illustrate
that the solvent-damping effects can significantly alter the nor-
mal modes of proteins. Finally, we show considering the protein
GroEL that our proposed framework can be used efficiently to
solve for the response of large proteins when a molecular
dynamics solution is not feasible.

2. Finite element framework

In this section, we present a framework of finite element
procedures developed for the analysis of protein dynamics in
solvents.

2.1. Langevin and Brownian dynamics

The Langevin governing equations are [35]

M€qþ Z _qþ V 0ðqÞ ¼ fðtÞ ð1Þ
whereM is the 3N � 3N diagonal mass matrix, Z is the 3N � 3N fric-
tion matrix, V is the potential energy function, V 0ðqÞ are the spatial
derivatives of the potential energy function with respect to the
position vector, q is the position vector, _q is the velocity vector, €q
is the acceleration vector, N is the number of particles in the Lange-
vin dynamics model, and fðtÞ is the vector of external stochastic
forces with the following conditions

hf iðtÞi ¼ 0
hf iðtÞ � f jðt0Þi ¼ 2kBTZijdðt � t0Þ ð2Þ

Here the bracket notation indicates the time-average value, kB is
Boltzmann’s constant, T is the temperature, dðt � t0Þ is the Dirac
delta function, f iðtÞ is the ith component of fðtÞ, and Zij is the ijth

component of the friction matrix. By expanding the potential
energy function in a Taylor series around a minimum state q0 and
neglecting the terms higher than quadratic order, we obtain the
Langevin equations governing the linearized protein response

M€xþ Z _xþ Kx ¼ fðtÞ ð3Þ
The ijth component of the stiffness matrix K is

Kij ¼ @2V
@qi@qj

¼ @2V
@xi@xj

ð4Þ

and the displacement vector x is

x ¼ q� q0 ð5Þ
In our research, we establish the mass matrix and the stiffness
matrix as described in Section 2.2. The Brownian dynamics equa-
tions are directly obtained by neglecting the inertial forces in Eq.
(3).

2.2. Calculation of the stiffness and mass matrices

The finite element method has been used successfully in calcu-
lating the lowest normal modes of proteins in vacuum [41–43]. It
has been shown that proteins can be modeled simply as homoge-
neous, isotropic, linear elastic continua because the mode shapes
of the lowest frequencies depend predominantly on the overall
geometry of the protein [44]. It was also shown that modeling
the protein as a heterogeneous material does not improve the
results significantly [45]. To calculate the stiffness and mass matri-
ces of a protein, the volume within its molecular surface is dis-
cretized with the 10-node tetrahedral elements using ADINA. The
mass density of the protein model is defined to be the molecular
mass per unit volume, and Poisson’s ratio is set to 0.3. The Young’s
modulus of the protein model is an adjustable parameter, which is
determined here by fitting the fluctuation profiles of the a-carbon
atoms obtained using the finite element method [46] to those cal-
culated by performing the atomistic block normal mode analysis
[47,48] using a molecular dynamics simulation program, CHARMM
[49].

2.3. Calculation of the friction matrix using the finite element method

Here we use the finite element method to calculate the solvent
friction matrix Z. We embed the protein geometry in the solvent
with the boundary of the protein given by the solvent-excluded
surface. The solvent-excluded surface of a protein is defined as
the closest contact point to the protein van der Waals surface of
a solvent probe with the radius of 1.4 Å (1 Å = 10�10 m) rolled over
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