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a b s t r a c t

In this paper, the multi-time-step method (MTS) of time integration is proposed to reduce the computa-
tional cost of solving the dynamic interaction of a train-track-bridge coupled system (TTBS). Considering
the different domain frequency characteristics of the dynamic responses of the train, track, and bridge,
the MTS method decomposes the TTBS into two smaller subdomains: the train-track coupled subsystem
with a high domain frequency, and the bridge subsystem with a low domain frequency. A fine time-step
and a coarse time-step are respectively adopted for the train-track subsystem and the bridge subsystem
to improve the computational efficiency. The two subsystems are coupled by the interaction forces
between the track and bridge. Two partition types of the TTBS are introduced and the effect of different
decomposition types on the accuracy and efficiency of the MTS method are discussed. The proposed
method is validated by comparing the numerical results with field measurement data of a simply sup-
ported bridge. A numerical simulation of a train traversing a long-span cable-stayed bridge is used to
demonstrate the computational efficiency and accuracy of the proposed method. It is shown that the pro-
posed method is accurate and computationally more efficient than using a uniform time-step for the
entire TTBS.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

With the increase in railway bridge spans and train speeds, the
dynamic interaction between bridge and train has been regarded
as an important factor that should be checked to ensure the ser-
viceability of bridges and the running safety and ride comfort of
trains [1–3]. Previous studies demonstrated that, for more accurate
assessment of the running safety and passenger comfort of trains
on bridges, the dynamic behavior of the track, as well as that of
the train and the bridge, should be considered [4,5]. Meanwhile,
compared with the analytical and semi-analytical methods for
tracks [6] and bridges [7,8], the finite element (FE) method is a rig-
orous tool for detailed modeling of complex track and bridge struc-
tures [9]. Although the dynamic responses of all components in the
train-track-bridge coupled system (TTBS) can be directly deter-
mined through the detailed FE model, the computational efficiency
is considerably reduced when generating a better understanding of
the dynamic performance of the entire system.

In previous studies of train-bridge interaction [10–12], the
mode superposition method (MSM) has usually been applied to
model the bridge, enhancing computational efficiency since it
reduces considerably the number of degrees of freedom (DOFs).
However, when a sophisticated track structure is involved in the
train-bridge interaction model, strong local dynamic behaviors
and high-frequency vibrations occur and it becomes difficult to
determine how many modes of vibration should be involved in
the analysis to simultaneously ensure accuracy and computational
efficiency [10,13]. To consider the dynamic behavior of the tracks,
therefore, the entire system is usually modeled using the direct
stiffness method (DSM) [9,14–16]. In that case, when a bridge is
rigorously modeled, the many DOFs generated are unavoidable,
and the entire system becomes cumbersome. By combining the
advantages of the DSM and the MSM, a hybrid track-bridge model
for analysis of the train-track-bridge interaction was proposed by
Yang et al. [17], with the tracks modeled by applying the DSM
and the bridge modeled by applying the MSM.

To date, conventional numerical methods for solving the equa-
tions of motion of the TTBS using a uniform-time-step (UTS) for the
entire structural problem domain. The size of UTS governed by the
stability and accuracy requirements of the wheel-rail contact
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domain is confined to 10�4 s [6]. Obviously, using a UTS integration
for the entire system is not appropriate because such a small time-
step would lead to high computational cost, especially for the
dynamic problem of train travelling through a long-span bridge
which involves hundreds of thousands of degrees of freedom
(DOFs) and time steps of structural responses. In fact, the dominant
frequencies of different components of the TTBS show a striking
contrast. For instance, the dominant frequencies of the train,
bridge, and track subsystems are of the order of 1 Hz, 10 Hz, and
1000 Hz [18]. According to Clough and Penzien [19], when the
time-step is less than or equal to 1/10 of the period corresponding
to the upper bound frequency of the structure, the vibration
responses can be captured accurately. Therefore, from the compu-
tational efficiency perspective, it is necessary to apply different
time-step sizes to solve the equations of motion of different sub-
systems of the TTBS.

In fact, the multi-time-step (MTS) method, dividing the
structure domain into several smaller subdomains with different
time-steps, has proven remarkably successful in improving the
efficiency of complex rigid-flexible problems with different
dominant frequencies [20]. Since the pioneering works of
Hughes and Liu [21] and Belytschko and Mullen [22], a number
of studies published in the literature focused on the hybrid
time integration scheme coupling (implicit/explicit) with homo-
geneous or heterogeneous time-steps [22–25]. The multi-time-
step features of these approaches often suffer from stability dif-
ficulties when the subcycling is activated. This is due to, the
need of interpolating values at the interface from the large
time-step subdomain for computing the kinematic quantities
in the fine time-step subdomain. Gravouil and Combesure [26]
proposed a new MTS method, named the GC method, that
incorporates the finite element tearing and interconnecting
(FETI) technology developed by Farhat and Roux [27]. The GC
method is based on a reduced interface problem derived from
the velocity continuity at the interface for the finest time scale,
and enables any Newmark time integration schemes could be
coupled with different time steps in each subdomain. Prakash
and Hjelmstad [28] refine the GC method by assuming velocity
continuity at the large time-step instead of the fine time-step
(PH method). Their method enables the dissipative drawback
of the GC method to be tackled while optimizing the computa-
tion time related to solving the interface problem. The GC
method and the PH method are both stable and accurate
[26,28]. However, in these two methods, the kinematic quanti-
ties of the structure are treated as the sum of two kinds of
quantities. One is calculated from the external forces only (the
free problem) and the other is calculated from the interface
reactions only (the link problem). Therefore, two sets of vibra-
tion equations and the interface reactions need to be solved
and this leads to considerable computational effort. Especially,
when the high-frequency domain of the structure contains a
large number of DOFs, such as the train-track-bridge coupled
system (TTBS), it often requires considerable computation time
when the GC or PH method is used.

In this paper, a novel MTS method is presented to improve
the computational efficiency of the dynamic interaction of cou-
pled train-track-bridge systems. In this approach, the TTBS is
divided into two subsystems – the train-track subsystem and
the bridge subsystem. Fine time-steps are used to solve the
equations of motion of the train-track subsystem because of its
high-frequency vibration characteristics; while coarse time-
steps are adopted for the bridge subsystem. In this study, the
train on the bridge is composed of a sequence of identical vehi-
cles and each 4-axle vehicle is modeled by a 10-degree-of-
freedom dynamic system. The 3-D track and bridge model are

established by the FE direct stiffness method. The equations of
motion for the train-track subsystem are derived by assuming
the linear Hertzian wheel-rail contact and using the track irreg-
ularity as the system excitation. These subsystems are coupled
by enforcing the compatibility of the forces at the contact points
between the track and the bridge. The proposed approach is val-
idated to be appropriate by field measurement data obtained
from a simply-supported girder bridge for heavy-haul trains in
China. Finally, a long-span cable-stayed bridge under construc-
tion in China is selected for a numerical case study, in which
the effects of different partitions of the TTBS and different
time-steps on the efficiency and accuracy of the proposed MTS
method are discussed. The results show that the proposed
method can reduce computation time while still achieving high
precision.

2. Train-track-bridge model

A fundamental model of the train-track-bridge dynamic
interaction can be established based on the mechanism illus-
trated in Fig. 1. Although specific models for different high-
speed trains or tracks and for different bridge structures can
be very different [13,29], they all have the same basic frame-
work that takes into account the train, track, and bridge subsys-
tem components coupled with the wheel-rail interaction and
the track-bridge interaction. For simplicity and clarity while
introducing the MTS method and its application in train-track-
bridge interaction dynamic analyses, the train is limited to in-
plane motion and the wheel-rail contacts, which are modeled
by Hertzian springs, are limited to the vertical, or Z direction
(as shown in Fig. 1).

The vehicle elements of the train are discretized into the follow-
ing main rigid bodies: one car body, two bogies, and four wheel-
sets, as shown in Fig. 1. The connections between the car body
and each bogie and those between each bogie and its wheelsets
are represented by linear springs and viscous dashpots. Under this
assumption, stiffness, damping, and mass matrices with 10 DOFs
can be constructed in the same manner as suggested by Biondi
et al. [30].

The track and bridge can be accurately modeled using various
FE types. The choice of each element type depends on the particu-
lar bridge configuration [31]. As shown in Fig. 1, the rail and sleep-
ers are modeled as beam elements. The elasticity and damping
properties of the fastener and ballast are modeled using uniaxial
spring-dashpot units. The non-structural mass of the ballast bed
is added to the self-weight of the bridge.

The wheel-rail interaction model is a key issue for the coupled
train-bridge dynamic system. Several methods have been
employed to address this issue, such as the corresponding assump-
tion [32] and the Hertzian elastic contact theory [33] for analyzing
the vertical wheel-rail interaction. Herein, the Hertzian stiffness kh
linearized from Hertzian non-linear contact theory [34] is used to
couple the train and rail and can be written as:

kh ¼ 3
2G

P1=3
0 ð1Þ

where G represents the wheel-rail contact constant (m=N2=3) and P0

represents the static wheel axle load. It should be noted that the
vehicles are assumed to undergo in-plane motion while the track
and bridge are established as 3D spatial models. Therefore, each
wheelset is connected with two rails by two identical Hertzian
springs, as shown in Fig. 1.

Because the train, track, and bridge are coupled as an integrated
time-dependent system, the equations of motion of the train-
track-bridge system can be written as:
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