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a b s t r a c t

To examine structural integrity in consideration of operational uncertainties, we utilized structural
response predictions obtained by transmitting estimates of structural system parameters into a simula-
tion representing the actual system. For this purpose, we resolved inverse parameter estimation by
Bayesian inference and constructed a forward model using certified reduced basis methods. For demon-
stration, we applied the proposed assessment strategy to two isotropic structural systems under static,
linear elastic deformation: a beam and a plate subject to bending and shearing dominant loadings,
respectively. Numerical investigation with emulated damage cases showed that structural response pre-
dictions were superior to material property estimates for inspecting structural integrity, particularly
when operational uncertainties were not ignorable.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

By virtue of sensor technology progress enabling sensor-
attached/-embedded structures [1], in situ, real-time sensor read-
ings are available for numerous applications in the context of
structural health monitoring and control [2]. In the literature,
structural integrity has been assessed via structural parameters
estimated in the form of system identification [3–13]. For instance,
various structural responses—such as displacements, strains, natu-
ral frequencies, and modal shapes—have been employed for track-
ing diverse structural parameters—such as material properties,
stiffness, mass, and damping coefficients. In general, system iden-
tification can be tackled by either a deterministic or a probabilistic
approach. The former seeks to find parameters that minimize mis-
fits between measured and predicted structural responses,
whereas the latter with the Bayesian perspective looks for param-
eters that maximize the posterior probability of the parameters
given measurements [14–18]. Either way, system identification
mainly concerning material properties tends to presume that oper-
ational conditions are precisely known a priori. However, informa-
tion on operational conditions may not be dependable in practice
due to noise contamination or poor measurability. Consequently,
uncertain operational conditions may adversely affect material
property estimation, which subsequently results in misleading
damage assessment.

Continuing with the previous research [19], we utilized struc-
tural response predictions in lieu of material property estimates
to enhance structural integrity assessment in the following fash-
ion: (i) solved an inverse problem to indirectly determine unob-
servable material properties as well as uncertain operational
conditions; (ii) propagated the estimated parameters through a
simulation to predict structural responses; and (iii) compared the
structural response predictions to the predetermined nominal
responses for structural integrity assessment. In this context, sys-
tem parameters comprise both material properties and operational
conditions. For example, the former includes Young’s modulus and
Poisson’s ratio in the case of isotropic materials, and the latter con-
tains force boundary conditions exerting on a structural system.
Response predictions denote the predicted behavior of a structural
system, such as natural frequencies and displacements. The nomi-
nal value refers to a quantity associated with the normal state of a
system. For instance, the nominal material properties and opera-
tional conditions are the intact material properties and the hypo-
thetical operational conditions, respectively. Similarly, the
nominal response prediction is the response evaluated at the nor-
mal system parameters.

To realize the assessment strategy, we capitalized on (i) certi-
fied reduced basis (CRB) methods [20,21] to rapidly predict struc-
tural responses, and (ii) Bayesian statistical inference [22–28] to
estimate system parameters under uncertainties. First, the CRB
methods are useful because they expeditiously address parameter-
ized partial differential equations (PDEs) on a reduced vector space
for many-query and real-time applications. Unlike other model

https://doi.org/10.1016/j.compstruc.2017.10.012
0045-7949/� 2017 Elsevier Ltd. All rights reserved.

E-mail address: aeronova@pusan.ac.kr

Computers and Structures 196 (2018) 49–62

Contents lists available at ScienceDirect

Computers and Structures

journal homepage: www.elsevier .com/locate /compstruc

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compstruc.2017.10.012&domain=pdf
https://doi.org/10.1016/j.compstruc.2017.10.012
mailto:aeronova@pusan.ac.kr
https://doi.org/10.1016/j.compstruc.2017.10.012
http://www.sciencedirect.com/science/journal/00457949
http://www.elsevier.com/locate/compstruc


approximation techniques, CRB methods equip with a posteriori
error analysis to evaluate the approximation error bound of a
reduced model without invoking the original full model. This error
bound information is conducive to quantifying uncertainty result-
ing from model approximation in the context of inverse estima-
tion. Next, Bayesian statistical inference is pragmatic because it
estimates system parameters as a posterior probability distribu-
tion in consideration of uncertainties modeled by probability dis-
tributions. In addition, the Bayesian inference formulation comes
with inherent regularization in the form of a prior probability dis-
tribution, which eases the ill-posedness of inverse estimation. In
particular, a prior probability distribution is amenable to infuse
objective information or subjective belief on parameters into the
estimation process [29]. Since a structural system is typically non-
linear in system parameters, we drew on Markov chain Monte
Carlo (MCMC) methods [30] to yield a posterior probability distri-
bution while allowing for uncertainties stemming from measure-
ment noise and CRB model approximation.

Overall, we proposed to delve into structural response predic-
tions instead of material property estimates to reliably examine
structural integrity under operational uncertainties. According to
the Rytter’s damage identification levels [8,31], the proposed strat-
egy is capable of achieving the level 1, damage detection, and a
part of the level 3, damage extent assessment. As for the outline,
this paper is organized as follows. After the introduction, Section 2

presents the formulations of Bayesian inverse parameter estima-
tion and structural response prediction. Section 3 delineates the
construction of CRB models based on the linear elasticity theory.
Section 4 illustrates the results of numerical investigation with
beam and plate models, comparing the utility of structural
response predictions to that of material property estimates. Sec-
tion 5 summarizes the findings of this research.

2. Formulations

In this section, we briefly explain the proposed structural integ-
rity assessment and the Bayesian statistical approach for inverse
parameter estimation. To derive a posterior parameter distribu-
tion, we adopted a Gaussian prior distribution and a measurement
likelihood constructed with a Gaussian measurement noise and
uniform CRB model error. Afterwards, we describe the evaluation
of structural response prediction, followed by an outline of the
overall assessment procedure to examine structural integrity.

2.1. Structural integrity assessment

The proposed assessment strategy is based on the following
conjecture: even though we may not correctly estimate system
parameters due to operational uncertainties, we may still predict
structural responses accurate enough to discern the presence of

Fig. 1. Conceptual illustration of the proposed structural integrity assessment with the 99:7% contours of Gaussian distributions.
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