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a b s t r a c t

In this study, we improve the performance of the enhanced Craig-Bampton (ECB) method. The improved
ECB method is derived by employing the algebraic substructuring and interface boundary reduction.
Unlike for the original method, the residual substructural modes are compensated only for the reduced
mass matrix, and this is the most attractive feature of the proposed method to reduce the computation
time significantly. In addition, for effective implementation and computer memory management, we give
a computer-aided formulation of the reduced mass, stiffness, and transformation matrices. Several large
structural FE models are used to illustrate the significantly improved solution accuracy and computa-
tional efficiency of the improved method.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Over the last half-century, component mode synthesis (CMS)
[1–18] has frequently been employed in structural dynamics as
an efficient and powerful tool to analyze the dynamic response
of large finite element (FE) models with small computational effort.
The primary concept of CMS is substructuring, and because of this,
CMS is often called a dynamic substructuring method [19–21]. The
first CMS method was proposed by Hurty in 1965 [1], and shortly
thereafter, the Craig-Bampton (CB) method [2] was developed, and
is the most popular CMS method at present. Later, various CMS
methods were developed based on the CB method, and have been
applied in many engineering fields [22–25].

In the CB method [2], using substructural eigenvalue problems,
the substructural normal modes are computed, and those are clas-
sified into dominant and residual substructural modes using mode
selection methods [22,26–28]. Then, the constraint modes are
computed to define the static deformation between the substruc-
tures and the interface boundary [2]. Finally, a reduced model is
constructed by synthesizing the dominant substructural modes, a
very small portion of the total substructural modes, and the
constraint modes.

In general, the error between the global (original) and reduced
models is caused by the residual substructural modes that are
neglected. Based on this fact, the residual substructural modes
can be regarded as a crucial ingredient for improving the solution
accuracy of the reduced model. Recently, using the residual

flexibility matrix to compensate for the residual substructural
modes, the enhanced Craig-Bampton (ECB) method [29,30] was
developed. The ECB method results in a greatly improved reduced
model in aspect of the solution accuracy.

However, the ECB method has limitations for solving large FE
models involving more than hundreds of thousands of degrees of
freedom (DOFs). In the ECB method, the substructuring is accom-
plished by using the physical domain-based substructuring consid-
ering the geometrical characteristics of the structure. Therefore, it
is not easy to make a large number of substructures. In such cases,
each substructure may contain relatively large DOFs and thus the
computation time for calculating the constraint modes, which
requires the computation of the inverse of a matrix, would be con-
siderably expensive. In addition, because the residual flexibility
matrix, a key to the ECB method, is highly populated, thus it has
substantial memory requirements and requires restricting compu-
tational work during the reduction procedure. For these reasons,
the original ECB method is not appropriate for dealing with large
FE models. Given the recent trend of increase in the size of FE mod-
els, these limitations should be resolved.

In this study, to resolve the aforementioned limitations, we
improve the performance of the ECB method. We first identify
sources deteriorating the computational efficiency in the original
method, and focus on managing them effectively in the proposed
method. To increase the computational efficiency and reduce the
requirement for computer memory, we use algebraic substructur-
ing [31–38], giving many small substructures, instead of physical
domain-based substructuring. To reduce the size of the interface
boundary, inevitably increased by algebraic substructuring, inter-
face boundary reduction [39] is employed. In the improved ECB
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method, the residual flexibility matrix, reflecting the residual sub-
structural modes, is applied only to the reduced mass matrix. This
is a significant feature for reducing the computation time. We also
demonstrate a computer-aided formulation for efficient imple-
mentation and computer memory management of the proposed
method.

In Section 2 of this paper, the original ECB method is reviewed
in brief. In Section 3, the improved ECB method is derived, and the
computer-aided formulation is presented in Section 4. In Section 5,
we verify the performance of the proposed method through several
large structural FE models, and finally, conclusions are drawn in
Section 6.

2. Original ECB method

In this section, we briefly review the formulation of the original
ECBmethod. The detailed derivation procedure is described in Refs.
[29,30].

The generalized eigenvalue problem for the non-partitioned
global (original) structural FE model is defined by

Kgug ¼ kMgug ; ð1Þ
whereMg and Kg denote the mass and stiffness matrices for the glo-
bal structure non-partitioned, respectively, and ug and k denote the
global displacement vector and the eigenvalue of the global struc-
ture, respectively.

Through the substructuring shown in Fig. 1, the global structure
is partitioned into n substructures that are fixed to its interface
boundary. Then, Eq. (1) can be represented in a partitioned matrix
form as
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in which the subscripts s; b, and c denote the substructural, inter-
face boundary, and coupled quantities, respectively. Ms and Ks are
block-diagonal mass and stiffness matrices of which diagonal terms

consist of substructural mass and stiffness matrices, MðiÞ
s and KðiÞ

s

(for i ¼ 1;2; . . . ;n), respectively.
In the CB method, the transformation matrix is defined by

T0 ¼ Us Wc

0 Ib

� �
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where Us denotes the substructural eigenvector matrix containing
all substructural modes, and it is decomposed intoUd

s andUr
s , which

are corresponding to the dominant and residual substructural
modes, respectively. Here, Wc and Ib denote the constraint mode
matrix and the identity matrix for the interface boundary,
respectively.

In Eq. (3), Us is a block-diagonal matrix, of which the diagonal
terms consist of the substructural eigenvector matrices UðiÞ

s (for
i ¼ 1;2; . . . ;n), and UðiÞ

s are computed from the following substruc-
tural eigenvalue problems
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in which KðiÞ
s denotes the substructural eigenvalue matrix corre-

sponding to the ith substructure, and UðiÞ
s and KðiÞ

s are decomposed

into dominant terms (UðiÞ
d and KðiÞ

d ) and residual terms (UðiÞ
r and KðiÞ

r ).
The constraint mode matrix Wc in Eq. (3) is computed by
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..

.
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where WðiÞ

c denotes the ith substructural constraint mode matrix.

Here, the inverse matrix ðKðiÞ
s Þ�1

can be effectively computed using

the Cholesky factorization of KðiÞ
s .

The global displacement vector ug is transformed using the
transformation matrix T0 in Eq. (3) as follows
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in which u denotes the generalized coordinate vector, and qd

s and qr
s

denote the modal coordinate vectors corresponding to the domi-
nant and residual substructural eigenvector matrices, Ud

s and Ur
s ,

respectively.
In Eq. (6), selecting the dominant terms, Ud

s and qd
s , we can

obtain the approximated global displacement vector ug as

ug � ug ¼ T0u with T0 ¼ Ud
s Wc

0 Ib

" #
; u ¼ qd

s

ub

" #
; ð7Þ

Fig. 1. Substructuring for the global structure: (a) Partitioned structure, where Xi and C denote the ith substructure and the interface boundary, respectively, (b) fixed
interface boundary.
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