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a b s t r a c t

A new approach for the analysis of the ductile fracture of thin-walled large scale structures is developed.
The method proposes a subscale refinement of the elements containing the crack. It allows for smooth
progression of the crack without furnishing required level of the mesh refinement, and a more detailed
representation of the crack tip and crack kink within the cracked elements. This approach is based on the
phantom node method and is intended to be applicable for different types of elements including both low
and high order elements. Numerical examples for dynamic crack propagation are presented and com-
pared to conventional solutions to prove the accuracy and effectiveness of the proposed approach.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Thin-walled structures are widely used for different applica-
tions, such as maritime structures, off-shore structures, and air-
craft fuselages. These various engineering applications call for a
reliable methodology to predict their failure under different load-
ing conditions. One of the main challenges of such a problem is
to find a methodology to analyse the ductile failure of large-
structures using shell theory. In this respect a complexity
addressed in the current paper is accounting for the fine scale of
ductile failure.

Analysing large-scale thin-walled structures requires sufficient
level of mesh refinement to maintain a high degree of accuracy
in the results. However, mesh refinement inherently adds to the
cost of the computation. Therefore, there is a need for a methodol-
ogy that simplifies such analyses, and yet includes the required
level of detail in the model. In line with developments by Rabczuk
et al. [1] and Mostofizadeh et al. [2], we propose herein a method
to ensure smoothness and accuracy of the crack propagation with-
out requiring a high degree of mesh refinement. A new crack tip
element based on the phantom node method [3] is presented
which brings in the possibility to represent the growth of a crack

through a single element in multiple steps using a subscale refine-
ment. The current approach bears similarity to the developments
by Zi and Belytschko [4], Chau-Dinh et al. [5] and Xiao and Kari-
haloo [6]. However, in the current method the treatment of the
crack kinks internal to the element can also be represented which
is an addition to the previous developments. The method is appli-
cable to different type of elements with both low and high order
approximations and it does not require any change in the spatial
discretisation of the neighbouring elements which leads to less
degree of mesh refinement.

The paper is outlined as follows. In Section 2, the subscale
refinement of a crack tip element based on the phantom node
method is described. In Section 3, the formulation is extended to
shell theory. In Section 4, the continuum material model and inter-
face material model are summarised. In Section 5, numerical
results are verified and compared with the results obtained from
the conventional phantom node method. Finally, the paper is con-
cluded in Section 6, where conclusions are discussed.

2. Subscale refinement of displacement field

In this section, the subscale refinement of the crack tip element
based on the phantom node method will be presented. The under-
lying concept of this method is to enhance the representation of
the kinematics of the discontinuity with a subscale refinement.
That is, additional degrees of freedom are added on the subscale
level of the cracked element. The conformity of this additional field
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is imposed with Dirichlet boundary condition on the boundary
nodes of the subscale problem.

Below, a review of the phantom node method will be given, fol-
lowed by the details of the subscale refinement of the crack tip ele-
ment. It should be emphasised that we herein consider standard
Phantom node kinematical relations for a 2D continuum with
cracks, although presented in a somewhat non-standard format
to provide a basis for the subsequent application to shell problems
in Section 3.

2.1. A review on the phantom node method

To set the stage, we introduce three configurations: the refer-
ence (or inertial) cartesian configurationB, the undeformed (mate-
rial) configuration B0 and the deformed (spatial) configuration B as
indicated in Fig. 1. In this framework, any material point (in 2D)
X ¼ ðX1;X2Þ in the undeformed configuration is related to a point
in the intertial configuration n ¼ ðn1; n2Þ via the mapping

X ¼ U½n�: ð1Þ
Similarly, any point x ¼ ðx1; x2Þ in the deformed configuration

relates to the point n in the inertial configuration via the (time-
dependent) mapping from the inertial to the deformed configura-
tion, herein denoted as the placement, as

x ¼ u½n; t�: ð2Þ
Analysing problems that concern strong and weak discontinu-

ities, such as cracks, and shear bands, poses a modelling challenge.
In the conventional finite element method, accuracy of the approx-
imation field is maintained provided that the field of approxima-
tion is sufficiently smooth and continuous. In case of presence of
a crack within an element, the displacement field is continuous
on each side of the crack, while it is discontinuous across it.

Exploiting the partition of unity concept, cf. Melenk and Babuška
[7], this has been treated in the eXtended Finite Element Method
(XFEM), pioneered by Belytschko and Black [8] and Moës et al.
[9], by enriching the approximation function with additional bases
allowing for the representation of discontinuities. However,
depending on the enrichment function employed, neighbouring
elements may require changes to be made.

An alternative approach, the phantom node method, has been
proposed by Hansbo and Hansbo [3]. In terms of the represented
kinematics, the phantom node method is identical to XFEM [10],
but it enjoys an easier implementation. In the current approach,
rather than adding additional degrees of freedom as in XFEM, a
jump in the displacement field is realised with overlapping ele-
ments as indicated in the bottom of Fig. 1. Each of these elements,
whose support is partially active, represents the displacement field
on one side of the crack. It requires the integrations to be carried
out only partially, on the active support of the overlapping
elements.

Now, consider a discretised cracked body as in Fig. 1, and partic-
ularly a subdomain (equal to an element) cut by the crack. In the
material configuration, this subdomain (element), denoted De

0, is
decomposed into a plus side, Deþ

0 , and a minus side, De�
0 , on either

side of the discontinuity surface, CS with normal NS. As for the
mapping U, it can then be approximated in a standard isoparamet-
ric1 fashion, irrespectively if it is cut by a crack or not, as

Uh;e ¼
X
i2I

Ni½n1; n2�X̂i ð3Þ

Fig. 1. A domain containing a crack in which the displacement jump is described by the phantom node method - the solid circles represent real nodes and the solid squares
represent phantom nodes.

1 To make it clear: even though we in the continuous case consider three different
configurations and a unique one-to-one mapping between a point n in the inertial
configuration and a point X in the undeformed configuration, we consider for simpler
implementation of the discretised case a single parent element (with local coordi-
nates) in the inertial configuration.
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