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a b s t r a c t

Probability distributions of basic random variables are essential for the accurate evaluation of structural
reliability. In engineering practice, the probability distributions of some random variables are often
unknown and the only available information about these may be their statistical moments. To conduct
structural reliability analysis without the exclusion of random variables with unknown probability dis-
tributions, the fourth-moment normal transformation (FMNT) has been proposed. However, the applica-
bility of expression of the FMNT has not been sufficiently investigated. Furthermore, the monotonic
regions of the FMNT are not defined without which the application of the transformation is inconvenient,
or even unreliable in reliability analysis. In the present paper, a complete expression of the FMNT includ-
ing six cases with different combinations of skewness and kurtosis is derived, and the monotonicity of
each case of the FMNT expression is confirmed. Literature suggests that the complete monotonic expres-
sion of the fourth-moment normal transformation is the first time to be successfully accomplished up to
date. Through the numerical examples, the FMNT is found to be quite efficient for normal transformation
and to be sufficiently accurate to include random variables with unknown probability distributions in
structural reliability analysis.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Searching efficient approaches for the probability of failure of
structures has led to the development of various approximation
methods. For almost all current reliability methods, such as FORM
[1,2], SORM [3–5], the importance sampling Monte Carlo simula-
tion (MCS) [6,7], the method of moments [8,9], the basic random
variables are assumed to have known probability density functions
(PDFs) or cumulative distribution functions (CDFs). With the
known CDFs/PDFs, the normal transformation (the x-u transforma-
tion) and its inverse transformation (the u-x transformation) can
be realized using the Rosenblatt [10] or Nataf transformations
[11]. However, in many practical engineering problems, the distri-
butions of some basic random variables are often unknown due to
the lack of statistical data. In such circumstances, the Rosenblatt
transformation or Nataf transformation cannot be applied, and a
strict evaluation of the probability of failure is not possible. Thus,
an alternative measure of reliability is required.

A comprehensive framework for the analysis of structural relia-
bility under incomplete probability information was proposed by
Der Kiureghian and Liu [12] based on the Bayesian idea. Zong
and Lam [13] suggested a method of estimating complex distribu-
tions using B-spline functions, in which the estimation of the PDF
is summarized as a nonlinear programming problem. Using the
statistical data, the probability distributions of random variables
can also be estimated by non-parametric approach such as the ker-
nel density estimation (KDE) [14–17]. Because the first four
moments (mean, standard deviation, skewness, and kurtosis) hav-
ing clear physical definitions are common in engineering and can
be easily obtained using the sample data, the u-x and x-u transfor-
mations realized using the first four moments of the random vari-
ables will be focused on in this paper.

One method to realize the transformation based on the first four
moments is using the distribution families. The distribution fami-
lies, such as the Pearson system and the Burr system [18], can be
used to estimate the distributions of the random variables.
Although these systems are very flexible, they are difficult to
implement, in particular, at the artificial interfaces between differ-
ent distribution types. Low [19] proposed a shifted generalized log-
normal distribution (SGLD). Although this distribution possesses
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many desirable advantages, it requires complicated computation
[19].

Another method is to use polynomial transformations, in which
the random variable x is directly expressed as a polynomial of a
standard normal random variable u. Various such transformations
have been proposed [20–23]. All the transformations (u-x transfor-
mation) are expressed as a third-order polynomial of u, which is
generally formulated as follows [21]:

ðx� lxÞ
rx

¼ xs ¼ SuðuÞ ¼ a4u3 þ a3u2 þ a2uþ a1 ð1Þ

where xs is the standardized random variable; lx and rx are the
mean value and standard deviation of x, respectively; Su(u) is a
third-order polynomial of u; and a1, a2, a3, and a4 are polynomial
coefficients that can be obtained by making the first four moments
of Su(u) equal to those of xs [21], which are shown in details in
Appendix A.

Since Eq. (1) is simple, the third-order polynomial transforma-
tion has been widely applied in structural reliability [23–31].
When the transformation is applied to structural reliability analy-
sis, u-x transformation is relatively easy to conduct, which can be
uniquely determined by the value of u. The inverse transformation

(x-u transformation) should be conducted by finding the solution
of Eq. (1), which defines a fourth-moment normal transformation
(FMNT).

A single expression of the FMNT based on the Hermite moment
model has been proposed byWinterstein [22], and it is widely used
to transform extreme fractiles from non-Gaussian processes to
Gaussian ones. Noting that the Hermite moment model has been
constrained by a monotone limitation, Choi and Sweetman [28]
offered an alternate solution technique to overcome the monotone
limitations of the original Hermite moment model, and it was
applied to highly skewed cases with near-Gaussian kurtosis, exam-
pled by a tension leg platform (TLP) subject to irregular seas. How-
ever, for the third-order polynomial of u (Eq. (1)), such
investigation hasn’t been conducted. With different combinations
of skewness and kurtosis, which result in different combinations
of the parameters of Eq. (1), there may be more than one possible
values of u corresponding to one x. Without clear definition of the
complete expression of the FMNT and the corresponding mono-
tonic regions of x or u, the FMNT will be inappropriate, even unre-
liable, to be used in structural reliability.

Therefore, the objectives of this paper are to derive the com-
plete expressions of the FMNT with different combinations of

Notation

A, B coefficient of the expression of the FMNT
As, Ac cross-sectional area of steel and concrete, respectively
a, c coefficients of p, q, J1⁄, J2⁄

ah, bh, ch coefficients of the Winterstein formula
a1, a2, a3, a4 polynomial coefficients used in the third-order poly-

nomial expression
a02, a

0
3 polynomial coefficients of Eq. (2a)

cp, cs damping coefficients of the system in Example 5 for the
primary and secondary oscillators, respectively

DWT deadweight tonnage of the vessel
E modulus of elasticity
Es, Ec modulus of elasticity of steel and concrete, respectively
F(�) cumulative distribution function of a random variable
f(�) probability density function of a random variable
G(�) performance function
h3, h4 coefficients of the Winterstein formula
J0 stationary point of a cubic function when the cubic

function is monotonic
J1 and J2 stationary points of a cubic function when there are

three separate monotonic regions
J1
⁄ and J2

⁄ coefficients for determining the number of real solu-
tions to Eq. (2a)

l length of the bars
mp, ms mass of the system in Example 5
kp, ks spring stiffness of the system in Example 5 for the pri-

mary and secondary oscillators, respectively
K coefficient of Eq. (11)
KL, KR coefficients of spring
Pf failure probability
p, q, r coefficients of the expression of u
ps peak factor of the system in Example 5
qr uniformly distributed load
S0 intensity of the white noise
Su(�) third polynomial of the standard random variable
S⁄u(�) simplified third polynomial of the standard random

variable
u standard normal random variable
ua allowable displacement in Example 2
umax, umed, umin maximum, medium, and minimum values of u,

respectively

V design impact velocity
VT typical impact velocity
Vmin minimum design impact velocity
X array of random variables
x random variable
x0 distance to face of pier from centerline of channel
xc distance from centerline of channel to edge of channel
xL three times the overall length of the vessel
xlimit the limitation of x in Example 4
xi0 possible value of x0

xs standardized random variable
x0 transformed random variable
x01, x

0
2, x

0
3 values of x0

ai, bi (i = 1, 2, 3, 4) parameters of the distribution in Example 1
a3x skewness of a random variable
a4x kurtosis of a random variable
bFORM first-order reliability index
bSORM second-order reliability index
bMCS reliability index obtained by Monte Carlo simulation
D coefficient of the expression of the FMNT
X water level
H impact angle
U(�) cumulative distribution function of a standard normal

random variable
/(�) probability density function of a standard normal ran-

dom variable
c mass ratio of the system in Example 5
lx mean value
lmp mean value of the mass of the system in Example 5
rx standard deviation
h coefficient of the expression of u
hsr a tuning parameter in Example 5
s duration of loading
xa average frequency of the system in Example 5
xp, xs natural frequencies of the system in Example 5 for the

primary and secondary oscillators, respectively
fa damping ratio of the system in Example 5
fp, fs damping ratios of the system in Example 5 for the

primary and secondary oscillators, respectively
n(�) a function of x used in the Winterstein formula
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