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a b s t r a c t

Efficient and accurate predictions of wave propagation are a vital component of wave-based non-
destructive interrogation techniques. Although a variety of models are available in the literature, most
of them are suited to a particular wave type or a specific frequency regime. In this paper we present a
multi-wave model for wave propagation in axisymmetric fluid-filled waveguides, either buried or sub-
merged in a fluid, based on the semi-analytical finite elements. The cross-section is discretised with
high-order spectral elements to achieve high efficiency, and the singularities resulting from adopting a
Lobatto scheme at the axis of symmetry are handled appropriately. The surrounding medium is modelled
with a perfectly matched layer, and a practical rule of choice of its parameters, based only on the material
properties and the geometry of the waveguide, is derived. To represent the fluid and the solid-fluid cou-
pling, an acoustic SAFE element and appropriate coupling relationships are formulated. The model is val-
idated against both numerical results from the literature and experiments, and the comparisons show
very good agreement. Finally, an implementation of the method in Python is made available with this
publication.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Acoustic waves are perhaps the most common principle upon
which modern non-destructive interrogation methods for buried/
immersed pipes are developed [1,2]. Both wavespeed and attenua-
tion depend on the properties of the pipe, its contents, and the sur-
rounding medium, and can be used to identify these properties or
evaluate their change over time. Moreover, when incident upon a
discontinuity, either in the pipe or in the surrounding medium,
the waves scatter, allowing for detection of defects or weakened
supports. Finally, waves radiating from a pipe can be sensed at
the ground surface and provide a basis upon which both the loca-
tion and the condition of the pipe can be assessed remotely. An
essential ingredient for all these techniques is a reliable model
for wave propagation in buried/submerged pipes with fluid.
Although there is a considerable number of publications dealing
with either waves in fluid-filled pipes or with waves in embedded
cylinders, relatively few works tackle the complete problem that
includes both the pipe, the fluid and the surrounding medium.

For obvious historical reasons, analytical approaches were
developed first. Dispersion curves and energy distributions for
fluid-filled thin cylinders have been presented by Fuller and Fahy
[3]. Pinnington and Briscoe derived low frequency approximations
for both fluid-dominated and axial waves in free pipes. The effect
of the surrounding fluid was investigated by e.g. Greenspon [4]
and Sihna et al. [5]. The case of a solid medium restraining the pipe
has been studied to some extent by Toki and Hakada [6] (in an
earthquake engineering context) and by Jette and Parker [7].

The pipe, the surrounding medium and the contained fluid alto-
gether were considered probably for the first time by Muggleton
et al. [8–10] where both fluid-dominated and axial waves were
studied based on a simplified interaction between the pipe and
the soil/water. Subsequent refinements and extensions of that
model allowing for inclusion of the shear coupling with lubricated
contact [11], compact contact [12] and evaluating torsional waves
[13] have also been published.

Despite the negligible computational cost and an immediate
insight into the physics gained from closed-form expressions
offered by the aforementioned models, they are often limited to
a particular wave type and the low frequency range. A more versa-
tile approach based on the global matrix method [14] was devel-
oped in the ultrasonic community and was successfully applied
to the problem of embedded, fluid-filled cylinders [15,16], among
others. The global matrix method originates from the description
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of the motion of the structure as a superposition of bulk waves
propagating in each layer (the number of layers and materials
can be arbitrary). The fundamental formulation is analytical, but
requires a numerical solution in the form of root-tracing which
often offers a fast and accurate solution. However, for complex
structures, root-tracing may become both inefficient and unreli-
able (as it strongly depends on the initial guess). Moreover, devel-
oping a universal tracing algorithm applicable to all configurations
is a rather cumbersome task.

The limitations of analytical models can be circumvented with
numerical methods which solve the dispersion equation as an
eigenvalue problem, such as the semi-analytical finite element
(SAFE) method. The fundamental concept behind SAFE is that the
cross-section is discretised using finite elements and spatially har-
monic motion is assumed in the direction of propagation [17,18].
The governing equation is written as an eigenvalue problem which
can easily be solved using any numerical package available. SAFE
provides a stable and reliable solution at a cost of the finite ele-
ment discretisation. However, the number of degrees of freedom
is usually small for closed waveguides.

Modelling open (embedded) waveguides with SAFE raises sev-
eral new challenges, of which the greatest is an efficient represen-
tation of the surrounding medium. Castaigns and Lowe [19]
proposed the idea of an absorbing layer with material damping
smoothly increasing away from the core. Their approach could be
conveniently implemented in a commercial finite element pack-
age, but the size of the problem grew large for low wavespeed soils.
Jia et al. [20] developed infinite elements that can be coupled to
standard, solid SAFE elements and analysed the effect of soil on
waves in hollow cylinders. Mazzotti et al. developed a hybrid
approach based on SAFE and 2.5D boundary element method
[21–23]. This idea yielded very promising results and was vali-
dated with experiments. However, coupling of two quite complex
methods poses additional challenges for implementation.

An alternative is to use perfectly matched layers (PML) to repre-
sent the embedding medium. PMLs were first used in mid 1990s
[24] and have since been successfully applied to a number of appli-
cations, particularly in the electromagnetic community. Including
PMLs in numerical models for elastic waves is a relatively new idea.
Treyssède et al. [25] developed a SAFE-PML formulation for plate
like structures with a cubic polynomial chosen as a stretching func-
tion. Soon after, Nguyen et al. [26] presented an analogous formu-
lation applied to three-dimensional embedded waveguides.
However, for an acoustically slow surrounding medium, the size
of the problem could grow large owing to short bulk wavelengths.
As a remedy, Treyssède [27] applied spectral elements utilising
high-order polynomials to enhance the efficiency of the solution.
Also recently, Duan et al. [28] developed an axisymmetric SAFE-
PML formulation and proposed the use of an exponential stretching
function, particularly well suited to wave problems.

To enable SAFE-PML calculations to be configured rapidly, Zuo
et al. [29] implemented this model in a commercially available
software. The advantages of their approach are that one can benefit
from the readily available meshing tools and can conduct simula-
tions without writing any code. The authors also give guidelines
on the choice of PML parameters. Some numerical examples for
solid 1D and 2D cross-sections have also been presented. Despite,
its user-friendliness, this approach still yields problems of consid-
erable size.

A scaled boundary finite element method (SBFEM) is a good
alternative to SAFE and has recently been applied to the problem
of axisymmetric [30] and embedded waveguides [31–33]. SBFEM
is a well-established numerical framework, particularly in earth-
quake engineering. Its key concept is to represent the computa-
tional domain using a discretised boundary and a scaling centre.
For guided wave problems, the final form of the equations bears

many similarities with those coming from SAFE, since in both cases
the assumption of the harmonic variation of the displacement
along the propagation direction is adopted. However, the key con-
cept and the origin of SBFEM are inherently different from FEM. In
the references mentioned above, the authors simplified the prob-
lem by representing the surrounding medium with a dashpot
boundary condition. Although their approach is simple and ele-
gant, it cannot provide accurate results when the contrast between
acoustic impedances is low.

Despite the impressive developments in the field of modelling
of elastic waves in recent decades, to the best of authors’ knowl-
edge, no complete and efficient numerical model for waves in
fluid-filled embedded/submerged pipes has been published.1 This
paper proposes a SAFE formulation capable of representing the
structural–acoustic coupling and benefiting from the circumferential
periodicity assumption. Both the pipe and the surrounding medium
can be composed of a number of layers of different, generally aniso-
tropic materials. We use high-order spectral elements (SEs), as they
are better suited to wave propagation problems than standard finite
elements and allow for efficient simulations. The singularities arising
from the axisymmetric assumption applied to SEs are accounted for
appropriately. The surrounding medium, which can be either solid or
fluid, is represented by a perfectly matched layer and practical
guidelines for the choice of the parameters of the PML are derived.
Our formulation is validated against published numerical results
and experimental measurements showing very good agreement.
Finally, an implementation of the proposed method in Python is
made available with this publication.

2. Derivation of SAFE elements

We consider an axisymmetric, infinitely long and uniform
waveguide, where r and h are the cross-sectional coordinates and
z is the direction of propagation. The waveguide can be composed
of any number of layers, either solid of fluid. Owing to the axisym-
metric assumption the cross-section is represented with mono-
dimensional elements. A practical representation of such class of
problems is an embedded/submerged fluid-filled pipe. The pipe
scenario together with chosen labelling and conventions is shown
in Fig. 1. SAFE formulations for all respective elements are pre-
sented in the following subsections.

2.1. Structural element

The structural (elastic) SAFE element is derived in a similar way
to [18] but with slightly different conventions. We start from
recalling the virtual work principle for deformable elastic bodies
[35] which states thatZ
V
d�u>q€�udV þ

Z
V
d��>�rdV ¼

Z
V
d�u>�tdV ð1Þ

where V is the volume occupied by the waveguide, �u is the displace-
ment vector, q is the mass density, �� is the strain vector, �r is the

stress matrix, �t is the external traction and €ð�Þ symbol denotes dou-
ble differentiation with respect to time. Our attention is focused on
free wave propagation here, hence the right-hand side, i.e. the
external traction, is set to zero.

The displacement and strain vectors are defined as

�u ¼ �ur �uh �uz½ �>
�� ¼ ��rr ��hh ��zz �chz �czr �crh½ �> ð2Þ

1 We acknowledge, that during the review process of this manuscript, Zuo and Fan
[34] published an article on SAFE-PML modelling of structures immersed in a fluid,
which bears some similarities with the approach presented in this paper.

2 M.K. Kalkowski et al. / Computers and Structures xxx (2017) xxx–xxx

Please cite this article in press as: Kalkowski MK et al. Axisymmetric semi-analytical finite elements for modelling waves in buried/submerged fluid-filled
waveguides. Comput Struct (2017), https://doi.org/10.1016/j.compstruc.2017.10.004

https://doi.org/10.1016/j.compstruc.2017.10.004


Download English Version:

https://daneshyari.com/en/article/6924262

Download Persian Version:

https://daneshyari.com/article/6924262

Daneshyari.com

https://daneshyari.com/en/article/6924262
https://daneshyari.com/article/6924262
https://daneshyari.com

