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aUniversity College Dublin, School of Mechanical and Materials Engineering, Belfield, Ireland
b The University of Texas at Austin, Cockrell School of Engineering, TX, USA
cUniversity of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, Croatia
dWikki Ltd., London W8 7PU, United Kingdom

a r t i c l e i n f o

Article history:
Received 11 August 2015
Accepted 18 July 2016
Available online 12 August 2016

Keywords:
Cell-centred Finite Volume method
Finite Area method
Linear elasticity
Block-coupled
Solid mechanics
OpenFOAM

a b s t r a c t

The current article presents a fully coupled cell-centred Finite Volume solution methodology for linear
elasticity and unstructured meshes. Details are given of the novel implicit discretisation and block cou-
pled solution procedure, including use of a Finite Area method for face tangential gradient calculations
and coupled treatment of non-orthogonal corrections. A number of 2-D and 3-D linear-elastic benchmark
test cases are examined using hexahedral, tetrahedral and general polyhedral meshes; solution accuracy
and efficiency are compared with that of a segregated procedure and a commercial Finite Element soft-
ware, where the new method is shown to be faster in all cases.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In the realm of Computational Solid Mechanics (CSM), the Finite
Element (FE) method is ubiquitous; however, methods such as
Finite Difference, Discrete Element, Finite Volume (FV), and so-
called Meshfree methods, can provide viable alternatives in many
applications. In particular, the FV method has been gradually
broadening its applicability beyond Computational Fluid Dynamics
and gaining momentum in the field of CSM; this may be primarily
attributed to its attractively simple and strongly conservative nat-
ure, while also having a close relationship with FE methods. To
date, the FV method has been applied to a large range of problems
in CSM, appearing in a number of distinct forms characterised by
different control volume discretisations: cell-centred [1–26],
vertex-centred [27–30], and the so-called parametric formulation
[31,32]. To-date, the cell-centred FV approach has typically
employed a segregated solution procedure, where the momentum
equation is temporally decoupled into components which are
solved sequentially, with outer Picard/Fixed-Point iterations pro-
viding the coupling. This method is extremely memory efficient
but can suffer from poor convergence when the inter-
displacement-component coupling is strong. To overcome such

inadequacies, the current article presents the development of a
block-coupled solution methodology, where inter-component cou-
pling is implicitly included as coefficients in a block matrix. Inde-
pendent of the current approach, Das et al. [25] have developed a
coupled cell-centred FV solution procedure; the current method
shares similarities with the procedure developed by Das et al.
[25], but significantly differs in a number of regards, in particular
with discretisation of tangential derivatives, and the treatment of
boundary conditions. Details of the differences between the two
methods are given later within Section 3.

The article is constructed as follows: Section 2 outlines the
mathematical model, derived from the governing momentum
equation and Hookean constitutive relation, where no distinction
is made between the initial and deformed configurations. The
newly developed coupled cell-centred FV discretisation is pre-
sented in Section 3; the control volume face normal derivative
terms are discretised using standard central differencing, and the
face tangential derivative terms are discretised using the Finite
Area method. Details are given of the inclusion of a larger implicitly
coupled computational stencil within 3-D unstructured polyhedral
code, and implementation in open-source C++ library OpenFOAM
(foam-extend-3.1). Section 4 presents the application of the
method to three benchmark test cases, where the efficiency and
accuracy of the method is compared with that of segregated FV
approaches, and a commercial FE software.
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2. Mathematical model

Neglecting inertia and body forces for clarity, the conservation
of linear momentum for an arbitrary body of volume X bounded
by surface C with outward facing unit normal n is given in strong
integral form as:Z
X
r � rdX ¼

I
C
n � rdC ¼ 0 ð1Þ

The Cauchy stress tensor r for a linear elastic body is given by
Hooke’s law:

r ¼ lruþ lruT þ ktr ruð ÞI ð2Þ

where u is the total displacement vector, r ¼ @
@x ;

@
@y ;

@
@z

� �
signifies

the so called Hamilton operator, synonymous with the del or nabla
operator, in the 3-D Cartesian coordinate system.

The Lamé coefficients l and k relating to the Young’s modulus
of elasticity, E, and the Poisson’s ratio, m, are given respectively as:

l ¼ E
2ð1þ mÞ ð3Þ

k ¼
mE

ð1þmÞð1�mÞ for plane stress
mE

ð1þmÞð1�2mÞ for plane strain and 3-D

(
ð4Þ

Transient effects may be included using a standard time-marching
approach, where the choice of finite difference temporal discretisa-
tion (e.g. backward Euler, Crank-Nicolson, Newmark-beta) will dic-
tate the temporal accuracy and order of accuracy. Inclusion of body
force terms is trivial; the use of more complex constitutive relations
is also possible, but may require modifications to the solution pro-
cedure for nonlinear materials.

The mathematical model is found by substituting the constitu-
tive relation (Eq. (2)) into the governing equation (Eq. (1)):I
C
n � l$uþ l$uT þ ktr $uð ÞI� �

dC ¼ 0 ð5Þ

where no distinction is made between the initial and deformed con-
figurations i.e. small strains and small rotations are assumed.

3. Numerical method

The mathematical model presented in the preceding section is
now discretised in a fully implicit coupled manner using the cell-
centred FV method, providing a discrete approximation of the pre-
viously presented exact integral. The discretisation procedure is
separated into two distinct parts: discretisation of the solution
domain and discretisation of the governing equations. If temporal
effects were considered, time would also be discretised into a finite
number of time increments, where the mathematical model is
solved in a time-marching manner.

3.1. Solution domain discretisation

The solution domain space is divided into a finite number of
convex polyhedral cells bounded by polygonal faces. The cells do
not overlap and fill the space completely. A typical control volume
is shown in Fig. 1, with the computational node P located at the cell
centroid, the cell volume is XP ; N is the centroid of a neighbouring
control volume, face f has face area vector Cf , vector df joins P to N
and r is the positional vector of P. Note that in contrast to standard
FE methods, no distinction is made between different cell volume
shapes, as all general polyhedra (e.g. tetrahedra, hexahedra, trian-
gular prism, dodecahedra, etc.) are discretised in the same general
fashion: this allows greater freedom during the often troublesome
mesh generation phase.

3.2. Equation discretisation

The standard cell-centred FV discretisation approach for solid
mechanics, as previously presented e.g. [3,6,9], partitions the sur-
face force (diffusion term) into an implicit component, included
within the matrix coefficients of the resulting linear system, and
an explicit component, treated in a deferred correction manner
and included explicitly in the source of the linear system; this split
of the diffusion term allows the three coupled scalar displacement
component equations to be temporarily decoupled, allowing use of
memory efficient iterative linear solvers. Outer Picard/Fixed-Point
iterations provide the necessary coupling in this so-called stag-
gered/segregated solution procedure. In contrast, the current
method aims to treat the diffusion term in a fully coupled manner
where only one solution of the final linear equation system is
required. To facilitate this, the surface traction (T ¼ n � r) is
decomposed into normal (Tn) and tangential (T t) components [12]:I

C
n � l$uþ l$uT þ ktr $uð ÞI� �

dC

¼
I
C
T dC ¼

I
C
½nn � T
zfflffl}|fflffl{Tn

þðI� nnÞ � T
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{T t

�dC

¼
I
C
ð2lþ kÞn � $un þ kn tr $tutð Þ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Tn

þln � $ut þ l$tun

zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{T t

dC ð6Þ

where $t ¼ I� nnð Þ � $ designates a tangential derivative; quanti-
ties in bold font are vectors or tensors; subscripts n and t represent
the normal and tangential components of a vector at a face, respec-
tively. The equivalence of the second and third lines on the right-
hand side of Eq. (6) are shown in expanded component form in
Appendix A.

The discretisation of the normal and tangential face-derivatives
are now given separately.

3.2.1. Normal derivative terms
The surface integrals may be replaced by a sum over the faces of

a control volume, and assuming a linear variation of displacement
u across the control volume, a second-order FV discretisation may
be applied. The normal derivative terms (n � $) on face f are discre-
tised as follows:I
C
ð2lþ kÞn � $un dC �

X
f

ð2lf þ kf ÞjDf jðnfnf Þ � uN � uP

jdf j
� �

þ
X
f

ð2lf þ kf Þðnfnf Þ � kf $tunð Þf
h i

ð7Þ

Fig. 1. General polyhedral control volume (adapted from [2,33]).
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