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a b s t r a c t

This paper presents a class of arc-length methods for the quasi-static analysis of problems involving
material and geometric nonlinearities. A constraint equation accounting for geometric and dissipative
requirements is adopted: the geometric part refers to the Riks and Crisfield equations, while the dissipa-
tive one refers to the dissipated energy. The approach allows for a continuous variation of the nature of
the constraint, and a switch criterion is not needed to trace the elastic and the dissipative parts of the
equilibrium paths. To illustrate the robustness and the efficiency of the methods, three examples involv-
ing geometric and material nonlinearities are discussed.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Arc-length techniques are numerical solution strategies that
can successfully handle structural responses characterized by limit
points. Pioneering work in this field is due to Riks [1] and Wemp-
ner [2], which introduced the idea of adding a load parameter, and
consequently a constraint equation, as additional unknown of the
problem. In these procedures, the load is free to increase or
decrease throughout the iterative process, and the singularities of
Jacobian matrix at the turning points are removed.

Further developments of the arc-length methods have been
proposed in the early eighties. Ramm developed the updated nor-
mal path method [3], imposing the orthogonality between the iter-
ative and the total increments. Crisfield [4] proposed a modified
implementation of the arc-length solution scheme, focusing on
the finite element implementation of the method and aiming to
preserve the symmetric-banded nature of the equilibrium equa-
tions. This method is sometimes denoted as the spherical arc-
length and the corresponding constraint equation is quadratic. A
modified procedure was successively presented by the same
author, based on the observation that material nonlinearities
may determine convergence issues when standard arc-length pro-
cedures are adopted. To this aim, a line search algorithmwas intro-
duced in the solution process [5]. A comprehensive review of the
arc-length methods is provided in [6]. In general, arc-length strate-
gies are well suited to solve nonlinear elastic problems, but they
are likely to suffer from convergence issues in presence of material

softening [7,8]. In presence of delamination phenomena, the strain
field is characterized by high localization in a restricted area sur-
rounding the crack tip. It follows that the typical constraint equa-
tion based on global quantities tends to fail in capturing the
process. To overcome this problem, the so-called local arc-
lengths have been proposed by many authors [8–10]. The idea of
these methods is to consider constraint equations based on the dis-
placements of the dominant nodes, i.e. those nodes involved in the
delamination process. In the implementation proposed by De Borst
[11], the sliding displacement of a crack was adopted, while Rots
and De Borst [12] considered the opening of the crack. May and
Duan proposed the use of the relative displacement in the regions
undergoing highly nonlinear processes [8]. In the work of Alfano
and Crisfield [13], the control function is obtained as a weighted
sum of a localized set of relative-displacement parameters.

In Ref. [14] a solution procedure is developed to study the
delamination propagation based on the linear elastic fracture
mechanics and Virtual Crack Propagation Technique (VCCT). The
delamination length is used as the constraint variable, and the load
increment size is controlled by means of the energy release rate.
Despite the robustness of the local arc-lengths methods, the main
drawback is that a priori knowledge of the failure process zone is
needed, as the local degrees of freedom entering the constraint
equation need to be identified. This restriction can be solved by
adopting a path following constraint based on the energy release
rate, as proposed by Gutierrez [15] and Verhoosel et al. [16]. This
approach allows to develop robust methods, able to describe com-
plex structural responses involving geometric and material nonlin-
earities. In any case, a double solution strategy is needed to switch
from the elastic and the dissipative phases, as the dissipated
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energy is null during the elastic loading phases. A relevant aspect is
then the criterion to handle the transition from the dissipative to
the elastic solution procedure. In Refs. [15,16], the dissipative part
is solved by considering a constraint based on the energy release
rate, while the elastic phase is solved with a force control, activated
on the basis of an energy threshold value. A first drawback of this
strategy relies in the number of iterations, and the consequent
impact on the efficiency of the method, characterizing the switch
from the dissipative to the elastic solution procedure. A second
restriction is the inability of the force-control to tackle responses
characterized by purely elastic unloading phases, such as in the
cases of snap-through or snap-back phenomena.

In this paper, a class of methods, hereinafter denoted as hybrid-
methods, is presented. The methods are based on the combined
use of geometric and dissipative constraint equations, which are
updated at each step of the solution process on the basis of the
damage state of the structure. Goal of these procedures is to guar-
antee robustness and improved computational efficiency, avoiding
abrupt time-consuming transitions between the solution strategies
for the dissipative and the elastic phase.

Preliminary aspects of the arc-length solution procedures are
reviewed in Section 2, and the main features of the hybrid methods
are presented in Section 3. The equations describing the hybrid-
Riks method are derived in Section 3.1, while the Crisfield version
is proposed in Section 3.2 together with a novel technique for the
root selection of the quadratic constraint equation. The application
of the hybrid-methods to three numerical examples is discussed in
Section 4, where the performance is discussed in terms of robust-
ness and computational efficiency.

2. Preliminaries on the arc-length methods

The finite element approximation of the nonlinear structural
problem can be represented by the following set of discrete equi-
librium equations:

f int að Þ ¼ fext ð1Þ
where the vectors f int and fext denote the internal forces and the
applied loads, respectively. The vector a collects the degrees of free-
dom of the problem and, for a displacement-based approach, they
coincide with the nodal displacements. The set of equations of Eq.
(1) is often solved with a force-control, meaning that the load is
progressively increased, starting from the unloaded configuration,
in the context of Newton-like iterations. In this case, unloading
paths cannot be captured. This restriction can be avoided if a dis-
placement control is conducted, consisting in specifying, step by
step, the imposed value of the displacements at a given set of nodes.
This approach can be applied to analyze a wide range of structural
problems, but is not adequate to trace the full equilibrium path in
those cases characterized by snap-backs.

To overcome the limitations related to the incremental solution
procedures, the arc-length methods can be successfully adopted.
These approaches are based on the representation of the external
load as the product between a vector defining the shape of the load

set, f̂, and a scalar parameter k which determines the magnitude of
the load. The load factor k is then part of the problem unknowns,
and its value is free to increase or decrease during the solution pro-
cedure. The presence of the additional unknown k makes the sys-
tem of Eq. (1) underdetermined, and one further equation, i.e.
the constraint equation, is needed. The structural problem is then
formulated as:

f intða; kÞ � kf̂ ¼ 0
gða; kÞ ¼ 0

(
ð2Þ

where the second term is a scalar equation defining the constraint.

The augmented system of Eq. (2) is usually solved by means of a
predictor-corrector scheme. In the first step, the predictor provides
an approximate solution. In the second step, the corrector phase,
the predictor solution is used as the initial guess for an iterative
procedure based on the Newton-Raphson method.

The problem unknowns of Eq. (2) are decomposed as:

Da ¼ Daj þ da; Dk ¼ Dkj þ dk ð3Þ
where Da and Dk denote the total increments at the current step,
Daj and Dkj are the increments at the last iteration j, and da and
dk are the increments referred to the current iteration (correspond-
ing to the index jþ 1). The index j ¼ 0 denotes the predictor solu-
tion, while the values j ¼ 1; . . . ;N define the corrector iterations. A
graphical representation of Eq. (3) is reported in Fig. 1, where the
iterations of the Newton’s method and the related increments of
the unknowns are reported for a single load step.

By application of the Newton-Raphson method to Eq. (1), the
following linearized set of equations is obtained:

Kda� dkf̂ ¼ r
hTdaþwdk ¼ �gj

(
ð4Þ

where:

K ¼ @f int
@a

; hT ¼ @g
@a

; w ¼ @g
@k

; gj ¼ g Daj;Dkj
� � ð5Þ

and the residual r is defined as:

r ¼ Dkj f̂ � f int Daj;Dkj
� � ð6Þ

The system of Eq. (4) can be solved by substitution, so that the
iterative increments da and dk are derived as:

da ¼ aI þ dkaII

dk ¼ � gj þ hTaII

hTaI þw

ð7Þ

where:

aI ¼ K�1 f̂ aII ¼ K�1r ð8Þ
After substituting Eq. (7) into Eq. (3), the total increment of the

current step can be determined.
Traditional arc-length methods – two examples are given by the

Riks [1] and the Crisfield [4] formulations – are based on constraint
equations that prescribe a geometric relation between the applied
loads and the increments of the displacement vector. For the Riks
method, the orthogonality is imposed between the iterative

Fig. 1. Graphical representation of the decomposition of the unknowns.
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