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a b s t r a c t

This paper presents the topology optimization of thin plate structures with bending stress constraints. To
avoid the stress singularity phenomena, the qp-relaxation is used for local stress interpolation. The local
stress constraints are aggregated into a single global constraint based on the p-norm stress measure. The
framework of the topology optimization is constructed using the commercial finite element software
ANSYS. In the presented work, the volume of the structure is minimized with the global stress constraint.
Numerical examples are demonstrated to validate the proposed topology optimization method.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Topology optimization, which is one of the most popular opti-
mization methods, is widely used for the conceptual design of
structures. A majority of studies on topology optimization have
been conducted to maximize the stiffness of the structures with
a limited amount of materials [1–3]. However, topology optimiza-
tion for maximum stiffness design may not satisfy the material
failure criterion, such as a maximum allowable stress. For this rea-
son, the necessity of employing a topology optimization method
that considers stress constraints has emerged [4,5].

Many studies that regard stress-constrained topology optimiza-
tion have been conducted over the past two decades. Among them,
active research has been conducted to resolve the stress singularity
problem and handle numerous local stress constraints. The stress
singularity problem is originally encountered in the optimization
of truss structures that have stress constraints [5–7]. The e-
relaxation approach [8], which relaxes the stress constraints, was
proposed to solve the stress singularity problem, and stress-
constrained topology optimization based on the SIMP (Solid Isotro-
pic Material with Penalization) method was developed using local
stress interpolation and e-relaxation [9]. The qp-relaxation [10]
was also proposed to solve the stress singularity problem in
SIMP-based topology optimization with stress constraints. The
local stress constraints require a large amount of computational
effort and exhibit highly nonlinear characteristics. To address these
difficulties, constraint aggregation methods using p-norm [11–13]

or the Kreisselmeier-Steinhauser (KS) function [14–17] were
developed to handle local stress constraints effectively. Recent
studies also present the topology optimization for the reinforce-
ment design considering stress constraints [18–20].

The above-mentioned studies on stress-constrained topology
optimization have been conducted using the structures that were
discretized using plane or solid element types. However, in real
engineering problems, a structure is often discretized using plate
elements based on the behavior of deformation. In this respect,
topology optimization of plate structures for compliance mini-
mization, eigenvalue maximization and reinforcement design have
also been studied for a long time [21–27]. The design of reinforce-
ment in plate structures including stress constraint also has been
reported [28]. A recent study proposed the thickness optimization
of the plate structure under stress constraints to consider failure of
the structures [29]. Nevertheless, topology optimization of the
plate structures with bending stress constraints has not been
reported to date in the literature.

In this research, we propose the topology optimization of thin
plate structures while considering bending stress constraints for
the first time. The plate structure is discretized using the discrete
Kirchhoff triangular (DKT) element [30]. The qp-relaxation is
applied in the process of the element stress calculation to resolve
the stress singularity problem. The global stress constraint using
the stress p-norm is used to handle the local stress constraints
effectively. Sensitivity analysis of the global stress constraint is
performed by the adjoint variable method. In this paper, the imple-
mentation of the topology optimization was conducted by the
commercial finite element software ANSYS. Several numerical
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examples are presented to validate the proposed topology opti-
mization method.

2. Finite element discretization of thin plates

In this research, the DKT element is used for the discretization
of thin plate structures. This element is a 3-node, 9 degrees-of-
freedom plate element, as shown in Fig. 1.

The displacement components of the plate can be assumed by
Eq. (1) to be based on plate theory with a transverse shear strain
[31,32]

u ¼ zbxðx; yÞ; v ¼ zbyðx; yÞ; w ¼ wðx; yÞ ð1Þ
where u and v are the displacement in the x and y directions,
respectively,w is the transverse displacement, z is the distance from
the middle surface (�h=2 6 z 6 h=2), and h is the thickness of the
plate. The variables bx and by are the rotations of the normal to
the undeformed middle surface in the x� z and y� z planes, respec-
tively. With the displacement assumptions in Eq. (1), the bending
strain eb can be given by

eb ¼ zj; j ¼

@bx
@x
@by
@y

@bx
@y þ @by

@x

2
664

3
775 ð2Þ

where j is the vector of curvature components. In the DKT element,
the Kirchhoff hypothesis is imposed on discrete points to model the
thin plate. In this instance, the discrete points are each node and
mid-node of the element [30]. Consequently, the curvature vector
j can be expressed by the following matrix equation

j ¼ Bu ð3Þ
where B is the strain-displacement matrix, and u is the vector of
nodal displacement. Therefore, the stiffness matrix of the DKT ele-
ment can be expressed as follows based on the bending strain
energy of the plate [33]:

KDKT ¼
Z
A
BTD0BdA ð4Þ

D0 ¼ h3

12
� C0 ð5Þ
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1� m2
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where A, E and v are the area of the element, Young’s modulus and
Poisson’s ratio, respectively. The notation C0 is the constitutive

matrix for the plane stress. The details for the derivation of the stiff-
ness matrix of the DKT element are described in [30].

3. Formulation of topology optimization

3.1. Statement of the optimization problem

The SIMP-based topology optimization problem that minimizes
the volume subject to local stress constraints can be described as
follows:

min
q

V ¼
XNE
e¼1

qeve

s:t: rVM
e 6 �r ðe ¼ 1;2; . . . ;NEÞ

Ku ¼ f
0 < qmin 6 qe 6 1

ð7Þ

where qe, rVM
e and ve are the design variables, von-Mises stress and

volume of the e-th element, respectively. The variable �r is a maxi-
mum allowable stress, and NE is the number of elements. In the
SIMP method, the constitutive matrix of the e-th element Ce can
be defined as

Ce ¼ qp
eC0 ð8Þ

where p is the penalization factor. The design element is solid mate-
rial when the design variable is 1 and void when the design variable
is 0. For the intermediate value of the design variable, the constitu-
tive matrix of the design element is interpolated using Eq. (8). To
avoid the singular matrix problem in the finite element analysis, a
lower bound for the design variable takes on a notably small but
finite value, such as qmin ¼ 10�3.

The local stress constraints in Eq. (7) have the stress singularity
problem, which arises from the discontinuity of the stress con-
straints [8]. In this research, the qp-relaxation [10] is applied to
solve the stress singularity problem. Note that the degeneracy of
the stress constraint is not affected by the evaluation of bending
stress at the top or bottom surface. Hence, the singularity of stress
constraints in plate bending problem can be resolved by the qp-
relaxation as in the plane stress problem. In the thin plate, the
bending stress of the e-th element re at the top surface (z = h/2)
can be represented as follows using qp-relaxation:

re ¼
Ceebjz¼h=2

qq
e

¼ qp�q
e C0ebjz¼h=2 ¼ h

2
qp�q

e C0Beue ð9Þ

where Be and ue are the strain-displacement matrix and the nodal
displacement vector of the e-th element, respectively. In this paper,
the values of p = 3 and q = 2.5 are used for the qp-relaxation.

Because the optimization problem Eq. (7) considers the stress
constraints of each design element, the number of constraints is
equal to the number of design elements. Thus, even with the
adjoint variable method, a large amount of computational effort
is required to calculate the sensitivities of the local stress con-
straints. Furthermore, local stress constraints exhibit highly non-
linear characteristics. For these reasons, the global stress
constraint using the stress p-norm [12,34] is used instead of local
stress constraints. Thus, the optimization problem in Eq. (7)
becomes

min
q

V ¼
XNE
e¼1

~qeve

s:t: cIrPN 6 1
Ku ¼ f
0 < qmin 6 qe 6 1

ð10Þ

whereFig. 1. Deformation assumptions for a plate element.
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