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a b s t r a c t

This paper tests the hypothesis that the tessellation used in tessellated continuum mechanics can form a
mesh in a continuous Galerkin finite element method. Although the tessellation is not unique, neither is it
arbitrary, and its construction imposes constraints on any numerical analysis. A distinctive feature of the
tessellation is that it can possess highly distorted elements yet—as a consequence of associated aniso-
tropy in material properties—can still return accurate results.
The numerical procedure is tested on classical fractal porous geometries to demonstrate the potential

of the method, and also illustrate the capability for analysis of disparate porous materials on continua.
� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Porous materials are widespread in nature and can take on var-
ious forms; examples include biological tissue such as wood, cork
and bone. Rocks and soils also often contain natural porous struc-
tures that may act as gas and oil reservoirs; as such, these struc-
tures are of particular interest to petrochemical industry, where
there is currently much activity driving developments in fracking.
Porous materials are also studied in diverse branches of modern
engineering such as impact mechanics [1], fluid mechanics [2],
poromechanics [3] and Printed Circuit Board (PCB) heat exchanger
design [4]. This latter application exploits the porous structure to
maximise the fluid contact area, and many porous heat exchangers
embody this geometry through high thermal conductivity metallic
foams such as copper and aluminium [5]. These are recognised to
be an excellent choice for enhancing heat transfer, since they pos-
sess a large fluid-solid contact surface area, high thermal conduc-
tivities and provide good enhancement of fluid mixing [6]. Heat
transfer provides a strong driver for the work described in this
paper.

Although heat exchanger performance is enhanced by exploit-
ing porous material, the heat transfer analysis itself faces serious
difficulties arising principally from the complex geometry
involved. The transport of heat and mass through porous media
has received much attention for many decades in a wide variety
of fields [7,8]; such approaches are indirect in that a continuum
approach is retained, with the influence of the cellular structure
relegated to coarse grained parameters such as permeability and

porosity. Clearly such models are unable to capture any effects
arising from refined changes in cellular designs. To incorporate
more refined structures, Lattice Boltzmann Methods have been
proposed as a possible way around the purely classical continuum
description; Yan Su et al. [9] for example has performed compar-
ison studies between direct and porous medium model heat
exchangers. The coupling of discrete lattice models—which
account for interactions between voids or particles via local poten-
tials—with continuum models (e.g. quasi-continuum models [10])
is an area of active research [11]. The idea underpinning these
types of approaches is the establishment of an appropriate contin-
uum representation, where the material-constitutive response is
informed by the lattice model. Although such approaches advance
the analysis they are evidently restricted by the extraordinarily
complex geometries involved, and are therefore unlikely to capture
the complex flow and heat transfer physics in practical porous
medium heat exchanger designs.

An alternative approach is to utilise the mathematics of fractal
geometry [12] and/or involve extensions to traditional calculus by
involving fractional derivatives or other such mathematical
devices. Transport approaches involving fractals and fractional
derivatives have been considered by Tarasov [13,14] and Ostoja-
Starzewski [15,16]. Their approaches are untested and physically
unrealisable, since they are founded upon transport forms that
do not readily arise from the underpinning physics. More recently,
a fractional differential equation has been investigated by Salva-
tore et al. [17] with the aim of establishing a more definitive con-
nection between fractional calculus and fractal geometry.
Similarly, Gianluca et al. [18] investigated fractal-porous materials
founded on classical fractals, including the Cantor dust, Sierpinski
carpet and the Sierpinski gasket using a fractional-order transport
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equation. It is transparent from the literature that most theories
involving fractional derivatives have limited physical basis and
offer little advance on classical parameter-continuum theory.

The approach adopted in this paper has at its foundation a clas-
sical control volume representation of the underlying physics.
Transport equations in an integral (Euler) form are used in the
analysis since integration—if correctly defined—readily caters for
the discontinuous physics associated with fractals. The transport
methodology is based on the existence of maps linking pre-
fractals with the continuum which, in turn, is founded on the con-
tinuum hypothesis. These maps are named hole-fillmaps due to the
role they play in closing the pores in any fractal cellular represen-
tation to produce a tessellated continuum. We term the whole pro-
cedure of hole-fill, tessellated continua and subsequent analysis
with transport equations as tessellated continuum mechanics.

Although the task of establishing hole-fill maps appears com-
plex, a novel procedure introduced in Ref. [19] (and improved upon
here) provides a straightforward route to obtain such construc-
tions. The tessellated continuum—which forms an associated mesh
in a Galerkin finite element analysis—is constructed in a process
that essentially mirrors the fractal construction process itself. Thus,
a fractal constructed through the iteration of n contraction maps
also has nmaps for the iterated construction of the tessellated con-
tinuum. The hole-fill maps can be constructed either by means of
function composition or (more directly) by identifying the corre-
sponding elements of a fractal with elements in the tessellated
continua. The former is more suited for analytical work, with the
latter suited to numerical analysis. For analytical work, the former
approach is more suitable, since the requirement for the precise
form of the governing partial differential equations can be ele-
gantly established by means of the hole-fill map and the integral
transport equations. For numerical analysis however, weighted
forms of the transport equations can be established and immedi-
ately applied using the second approach, without recourse to par-
tial differential equations. One of the novel contributions of this
paper is to establish a finite element method on a tessellated con-
tinuum. We limit attention in this paper to a Galerkin formulation
as this permits a commercial code to be readily employed. How-
ever, the appearance in the new approach of energy flux related
terms at element edges—when coupled to the Galerkin formula-
tion—limits the choice of fluid to those that are highly conducting
and unable to support a temperature difference perpendicular to
the direction of fluid flow. This does mean however that a mod-
elling error [20,21] is present, which cannot be removed by means
of mesh refinement. It is demonstrated in the paper that for the
heat-exchanger problems considered that the modelling error is
relatively small.

Other numerical methods (with or without elements [22–25])
could in principle be applied to solve the problems considered
here. This could be done in one of two ways, i.e. by performing a
numerical analysis on the tessellation (and mapping the results)
or on the porous medium directly. No papers presently exist for
analysis on a tessellation (as this paper is the first) but many meth-
ods have been applied to porous media [26–30], although these are
limited to the solution of equations involving indirect representa-
tions of the geometry. There also exists a range of computational
techniques for the efficient analysis of problems where the physi-
cal response is characterised by the size of the structure and the
size of some underlying localised microscopic phenomena. The
homogenisation approach [31] (which also capture the effect of
geometry indirectly) can often be employed to analyse these types
of problems and a computationally efficient approach can typically
involve decomposition methods (see for example Refs. [32,33]).

This paper demonstrates an application of the Galerkin finite
element method to a tessellated continuum to capture the energy
transfers taking place on pre-fractal structures with applications to

cellular heat exchangers. To achieve this, the general transport the-
ory for pre-fractals and tessellated continua is presented in Sec-
tion 2, where the physics of the two domains are related by the
assumed existence of a hole-fill map. This is followed by the intro-
duction to weighted transport equations in Section 3 and the
establishment of the Galerkin finite element method for tessellated
continua providing a convenient vehicle for numerical analysis of
cellular designs. The whole procedure depends intimately on the
tessellated continuum structure which is generated by means of
a recursive method closely replicating the fractal generation pro-
cess. Material properties for non-product fractals are considered
in Section 4 along with corresponding tessellations. Of particular
focus is the relationship between material properties on a tessella-
tion and its relationship between corresponding pre-fractals. The
tessellated finite element analysis method is introduced in Sec-
tion 5 via some simple 1-D fractals; analytical 1-D solutions are
obtained and contrasted against numerical predictions on different
(but equivalent) tessellations. The process is repeated in Section 6
for product tessellations. In Section 7, thermal analysis is per-
formed on non-product sets and predictions are contrasted with
results obtained from the commercial package ABAQUS.

2. Tessellated continuum mechanics

The idea underpinning the tessellated approach is the
assumed existence of a map (a hole-fill map) from a pre-fractalbEk (which can be formed by the kth iterations of an Iteration

Function Scheme (IFS) [34]) to a tessellation bTk (which also
can be formed in a similar fashion). Typical tessellations for
some classical fractals are depicted in Figs. 1 and 2. The arrows
depicted in the figures identify a corresponding selection of pre-
fractal elements and tiles and it is important to appreciate that
all pre-fractal elements have corresponding tiles. Physics taking

place on bEk is best represented in a weak sense using transport
equations in integral form as these readily capture the highly
discontinuous nature of the problem under consideration. Trans-
port equations apply physical conservation laws to a control vol-

ume (identified here by Xs), within which the pre-fractal bEk is at
least in part embedded. A control volume is a continuous open
set of points whose closure includes a continuous orientable
boundary Cs. A typical transport equation for a stationary control
volume takes the form

d
dt

Z
Xs

qswsdVs þ
Z
Cs

qswsv s � dCs ¼ �
Z
Cs

Js � dCs þ
Z
Xs

qsbsdVs; ð1Þ

where w is a specific field variable, q is density, v is the material
velocity, n is an outward pointing unit normal, dC ¼ ndC, J � n is a
flux, b is a source term and subscript s is used to indicate quantities

in the physical space. It is assumed here that the fractal bEk is not
deforming although it is noted in passing that transport theory
can readily account for such a scenario.

The pre-fractal bEk is assumed to support mass and given that Xs

can be made arbitrarily small it is possible that bEk \Xs ¼ U, i.e. the
intersection of the control volume and pre-fractal can under cer-
tain conditions be empty. This can happen in a situation where a
control volume fits in a pore for example. Thus, in order to ensure
the validity of Eq. (1) for arbitrary Xs some care is required partic-
ularly with flux terms; the absence of mass readily removes
domain integrals but not necessarily the flux integral.

With the assumed existence of a tessellation bTk it can be
assumed further that there exists a similar transport equation for

the stationary control volume Xr in which the tessellation bTk is
embedded. The transport equation for Xr is
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