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a b s t r a c t

In the paper an innovative formulation of a FEM computational model for the analysis of elastoplastic 3D
truss-frame structures is developed within the framework of the Theory of Plasticity and Limit Analysis.
Reference application is made to a historical iron arch bridge. Original computational features imple-
mented in the solving algorithm allow for tracking the limit structural behavior of the bridge, by reaching
convergence with smooth runs up to the true limit load and by tracing the corresponding collapse dis-
placements. This is achieved disregarding for the considerable number of dofs of the whole structural
model, ranging in the order of thirteen thousands.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, an autonomously-developed elastoplastic formu-
lation and implementation in a computer code apt to model gen-
eral 3D truss-frame structures has been outlined and applied to
develop a complete non-linear structural analysis of a marvelous
historical iron arch bridge, namely the Paderno d’Adda bridge, built
in 1889 over the river Adda near Milano, northern Italy. Specific
accounts on the various features of this remarkable structure are
available in SNOS [1], Nascè et al. [2], Nascè [3], and further gath-
ered in Ferrari [4], Ferrari et al. [5–8] (brief information is pre-
sented here in Section 4). The code runs within a MATLAB
environment and allows for tracking the true limit load multiplier,
by a sophisticated computational strategy apt to describe the ‘‘ex-
act” evolutive response of the structure until collapse, according to
classical concepts from the Theory of Plasticity and Limit Analysis,
as applied to the inelastic analysis of beam and frame structural
systems (see e.g. Massonet and Save [9], Kaliszky [10], Jiràsek
and Bažant [11]).

Elastoplastic analysis of frames has been the subject of consid-
erable research interests since the sixties (see e.g. Maier [12,13],
Maier et al. [14], Capurso [15], Hodge [16], Tin-Loi [17], Zouain
et al. [18], Kaliszky and Lógó [19], Olsen [20], Liew et al. [21], Kal-
iszky and Lógó [22]), also in view of developing robust and efficient

computational algorithms (see e.g. Maier [23], Papadrakakis and
Papadopoulos [24], Van Long and Nguyen-Dang [25]), including
in the framework of so-called ‘‘direct methods” (see e.g. contribu-
tions in Spiliopoulos andWeichert [26] and Forward by G. Maier on
it), which are not of a primary concern in the present paper.

Further developments along this line of research during the last
decade are many. Among them, a brief presentation on representa-
tive examples follows. Tangaramvong and Tin-Loi [27] treated the
limit load estimation under the effect of combined stresses, consid-
ering local strain softening and both path-independent (holo-
nomic) and path-dependent (nonholonomic) behaviors. Skordeli
and Bisbos [28] and Manola and Koumousis [29] proposed meth-
ods for approximating the yield surface with ellipsoids and with
a polyhedron expressed in the context of a convex hull, respec-
tively, instead of considering the delimitation of the elastic domain
as piecewise linearized. Mahini et al. [30] proposed a method to
determine the plastic multipliers of perfectly elastoplastic frames
as a solution of a Linear Programming (LP) problem by exploiting
the plastic work criteria, referred to as Dissipated Energy Mini-
mization approach. Later, such method has been extended by the
same authors to softening frames (Mahini et al. [31]). In Thai and
Kim [32] and Dehghani et al. [33] the possibility to consider the
plastic deformation varying through the cross section and along
the length of the structural members have been explored. Yang
et al. [34] presented a work in which the effects of uncertainties
are considered, as related to the applied forces and to the plastic
material capacities of the structure.
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Restingon theunifyingbasis providedby the Linear Complemen-
tarity Problem (LCP) (see Cottle et al. [35], Billups andMurty [36]), a
specific account of which is available, together with its frequent
involvement in the theory of elastoplasticity, e.g. inMaier [23], Cohn
and Maier [37], Franchi and Cohn [38], Lloyd Smith [39], Wakefield
and Tin-Loi [40], Giambanco [41], the procedure involved in the pre-
sent algorithm starts from earlier contributions gathered in Coc-
chetti and Maier [42], therein focused on the analysis of softening
frames, globally referred to here as ‘‘exact time integration”method.

In the work presented herein, such a procedure is further devel-
oped in theoretical terms, to be finally applied, for the first time, to
the elastoplastic analysis of a perfectly-plastic large truss-frame
structure with considerable complexity, namely a 3D FEM model
of the Paderno d’Adda bridge. This involves roughly 5,300 beam
finite elements with plastic joints and 13,300 degrees of freedom.

In light of the complexity and size of the structures to which the
presented algorithm is addressed, some simplifying assumptions
have been adopted towards practical and efficient implementation
and use. These refer to: lumping plasticity at some pre-selected
sections (‘‘plastic joints”, as ‘‘plastic hinges”) and using Piece-
Wise-Linear (PWL) elastic perfectly–plastic models to describe
the behavior of such critical sections. Moreover, the non-linear
problem is numerically solved on the basis of the ‘‘step-wise holo-
nomic” interpretation of the evolution of a dissipative system
(Maier [23], De Donato and Maier [43], Franchi and Genna [44]).
This means that the dependence on the given loading path does
not hold within the current step; in other terms, the intrinsic irre-
versibility of the plastic hinge model is accounted for by updating
only the internal variables at the transition stage from step to step.

Furthermore, the formulation presents several peculiar features
that appear to be innovative, both in general terms and in their
specific application to the present structural context. They refer
to: (i) a new approach for solving structural systems for truss-
frame analysis modeled by finite elements, with particular atten-
tion to the imposition of kinematic constraints; (ii) the determina-
tion of the global elastoplastic matrix of the structure that is
involved in the solving system, based on an iterative ‘‘updating”
procedure; and (iii) the application of such a procedure to the effec-
tive modeling of the global non-linear elastoplastic behavior of a
large truss-frame structure, like that of the Paderno d’Adda bridge.

The paper is structured as follows. Section 2 presents a new
approach for solving structural systems for truss-frame analysis
modeled by finite elements, within the elastoplastic range. In par-
ticular, the formulation adopted in the solving procedure, based on
a tangent stiffness formulation, is described. Section 3 outlines
specifications about the determination of the tangent stiffness
matrix, when the yield domain is represented by uncoupled condi-
tions. In such a case, the tangent stiffness matrix is determined
through a dedicated Gaussian elimination procedure. Section 3
presents as well the sub-step incrementation implemented in the
driving algorithm. The main steps of the incremental procedure
are pointed out and then schematically resumed in a flow-chart.
Section 4 illustrates the main results of first complete elastoplastic
analyses of the Paderno d’Adda bridge. Brief comments on various
computational aspects and effectiveness of the simulations are
concisely pointed out in closing Section 5.

Matrix notation is adopted throughout. Matrices and vectors are
represented by bold-face symbols. Transposition is indicated by
superscript T. A dot marks a time rate, i.e. a derivative with respect
to an ordering, not necessarily physical, time variable t.

2. Formulation and general framework of the computational
algorithm

In following Section 2.1 cornerstone equations from the Theory
of Plasticity and Limit Analysis, as strictly pertinent to the present

context, are arranged, to present a new approach of solving system
for truss-frame analysis, further described in Section 2.2. Although
the present implementation has been fully developed in a 3D set-
ting, simpler 2D space representations will be adopted for illustra-
tion purposes.

2.1. Formulation in the framework of the Theory of Plasticity and Limit
Analysis

According to traditional FEM modeling in structural engineer-
ing, truss-frame structures are modeled by conventional finite ele-
ments, i.e. the structure is assumed to be the assembly of various
elements connected at a discrete number of points (nodes). Exter-
nal forces and constraints are reduced to act at these points. In
particular, the present FEM formulation is based on classical
Euler–Bernoulli beam finite elements, according to the following
peculiar hypotheses: straight elements, uniform cross sections,
homogeneous material properties, transverse displacements mod-
eled by cubic shape functions (i.e. negligible shear strain effects),
axial rotations and displacements varying linearly along the beam
element.

Moreover, possible inelastic deformations manifest themselves
only at pre-selected sections (plastic joints). As a generalization of
the classical plastic hinge concept in the Limit Analysis of frames
(see e.g. Cocchetti and Maier [42] and references quoted therein)
it is assumed that critical sections are located between adjacent
conventional linear elastic finite elements. The behavior of the crit-
ical sections is described by an elastoplastic (perfectly-plastic)
model with PWL yield functions. This means that the relationships
between static and kinematic generalized variables of the beam
cross sections are piecewise linearized (see e.g. Maier [13,23],
Capurso [15], Hodge [16], Tin-Loi [17], Olsen [20]).

According to the idealizations above, the constitutive relations
below describe a general formulation of a PWL elastoplastic model
in the critical section of a beam element (all relations are stated in
terms of total quantities):

q ¼ eþ g; e ¼ k�1N; g ¼ nk ð1Þ

u ¼ nTN� Y 6 0; k P 0; uTk ¼ 0 ð2Þ
Eqs. (1) and (2) relate the generalized strain history q to the gener-
alized stress history N. With reference to a 2D interpretation of
truss-frames (Fig. 1), the generalized strains in vector q consist of
relative rotations at the extremities of the beam (with respect to
a principal centroidal axis of the cross section) and axial elongation
(discontinuity of displacement along the centroidal axis of the
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Fig. 1. Schematic description of a (2D) beam finite element with plastic joints:
(a) Static (external) variables H and kinematic (external) variables u. (b) Kinematic
plastic internal variables g at the plastic joints. (c) Static internal variables N.
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