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a b s t r a c t

Amethod is presented for tracing the locus of a specific peak in the frequency response under variation of
a parameter. It is applicable to periodic, steady-state vibrations of harmonically forced nonlinear
mechanical systems. It operates in the frequency domain and its central idea is to assume a constant
phase lag between forcing and response. The method is validated for a two-degree-of-freedom oscillator
with cubic spring and a bladed disk with shroud contact. The method provides superior computational
efficiency, but is limited to weakly-damped systems. Finally, the capability to reveal isolated solution
branches is highlighted.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The dynamical behavior of mechanical systems are governed by
differential equations that are, in general, nonlinear in the describ-
ing coordinates. Once the nonlinear terms in the differential equa-
tions become relevant in the considered dynamical regime, we
refer to these systems as nonlinear systems. Examples are systems
with contact or dry friction, fluid–structure-interaction or large
deflections. The nonlinear character makes their design and analy-
sis more difficult and usually necessitates for appropriate numeri-
cal procedures. In the design process, it is often of interest to
predict the vibration behavior in certain ranges of parameters. In
the presence of sustained external forcing, the phenomenon of res-
onance is of particular concern. In this case, the steady-state vibra-
tions can reach high levels, which may lead to structural damage
and noise. To avoid resonances, or to ensure that the resonant
vibration level is tolerable, it is important to predict resonance fre-
quencies and associated vibration amplitudes. Throughout this
work, only numerical methods are addressed, since the different
analytical techniques are strictly limited in their range of applica-
bility. Furthermore, we discuss only methods capable of analyzing
the dependence on generic parameters. In contrast, methods lim-
ited to the analysis of only specific parameters are excluded from
the discussion. An important example are nonlinear modal analysis

methods [1], which are only capable of revealing the dependence
of resonances on the excitation level.

The most straightforward way to obtain resonance frequencies
and amplitudes is the computation of individual frequency
responses for a discrete set of parameters. This technique often
requires a large number of frequency response computations,
because the system behavior can exhibit regimes of high or low
sensitivities, and the associated parameter ranges are not a priori
known. This might result in prohibitive computational effort.

An alternative technique was originally proposed by Petrov [2],
and has been frequently applied since then, e.g. in [3]. The method
aims at reducing the computational effort compared to crude
forced response computations by directly determining the reso-
nance curves, i.e., the curves that trace the locus of a specific peak
of the frequency response under the variation of a parameter. To
this end, a so-called resonance condition is introduced to the prob-
lem formulation, which requires the solution point to have a hori-
zontal tangent in the amplitude–frequency plane. To this end, the
unknown resonance frequency becomes part of the sought solu-
tion. The horizontal-tangent method is formulated in the frequency
domain in the framework of the high-order harmonic balance
method. The extended set of equations is solved using a
gradient-based method in conjunction with a predictor–corrector
arc-length continuation method. Since the computation of the tan-
gent requires already the first-order derivatives, the gradient-
based solution requires second-order derivatives of the residual
with respect to the unknowns. This method can be categorized
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as a first-order method, in the sense that the formulation of the
problem already involves first-order derivatives. Computing the
required second-order derivatives can result in a huge computa-
tional burden, in particular if they are approximated by a finite dif-
ference scheme. But even in the case of analytical derivatives, the
plain evaluation of their algebraic forms involves a considerable
overhead. If this overhead is in the order of magnitude of the
potential computational savings achieved by the direct analysis
of resonances, this overhead can render this technique useless.
Moreover, the analytical calculation of second-order derivatives
can become an exhaustive and tedious task in the case of generic
nonlinearities. For the class of piecewise polynomial systems, for-
tunately, automated frameworks are available [4].

In order to gain further computational savings in the
computation of resonance curves, we propose a zeroth-order
method in this work, i.e., a method that does not involve any
derivatives in the formulation of the governing equations. The
criterion is based on the phase lag between response and forcing.
To this end, the notion of phase must be compatible with the anal-
ysis method, and we therefore place the method in the frequency
domain framework.

In this paper we present this new method, which we refer to as
phase-resonance method. We recap the harmonic balance method
and present the additional phase lag criterion in Sections 2.1 and
2.2, respectively. In addition we show a qualitative analysis of
the new method in comparison to the horizontal-tangent method
in Section 2.3. In Sections 3 and 4, the method is validated for
two nonlinear mechanical systems, namely a two degree-of-
freedom (2DOF) oscillator with cubic spring, and a bladed disk
with nonlinear shroud contact, respectively. Special attention is
paid to the strongly nonlinear regime, where it is demonstrated
that the method may also be useful to gain insight into the compli-
cated behavior of dynamical systems.

2. A novel method for the direct computation of forced
resonances of nonlinear systems

2.1. Recap of the harmonic balance method

The harmonic balance method1 is a widely-used method to
numerically compute the periodic, steady state oscillations of non-
linear dynamical systems. Consider a nonlinear mechanical system
that has already been discretized in space and is described in terms
of NDOF generalized coordinates assembled in the vector q. The
motions qðtÞ of the system are governed by a set of ordinary differ-
ential equations,

M€q tð Þ þ C _q tð Þ þ Kq tð Þ þ fnl q tð Þ; _q tð Þ; kð Þ � fex t; kð Þ ¼ 0; ð1Þ

and appropriate initial conditions qð0Þ ¼ q0 and _qð0Þ ¼ u0. In Eq. (1)
M is the mass matrix, C is the damping matrix, K is the stiffness
matrix, fex t; kð Þ is the vector of excitation forces, and fnl is the vector
of nonlinear forces. Without loss of generality, it is assumed that fnl
is essentially nonlinear in q; _q so that the linearized behavior is fully
accounted for in the structural matrices K and C, respectively.
Furthermore t is the time and k is a parameter which may influence
the excitation and/or the nonlinear force. It should be noted that the
approach can also be applied if the structural matrices are
parameter dependent. This case is merely excluded from the further
development for the sake of an easier presentation.

In the harmonic balance method, periodic oscillations of the
generalized coordinates qðtÞ with the fundamental frequency x
are assumed. The unknown coordinates are approximated by a
truncated Fourier series with the harmonic order Nh:

q tð Þ � Q 0 þ
XNh

n¼1

Q cð Þ
n cos nxtð Þ þ Q sð Þ

n sin nxtð Þ: ð2Þ

The generalized velocities and accelerations are determined by
deriving Eq. (2) with respect to time,

_q tð Þ �
XNh

n¼1

� Q cð Þ
n nx sin nxtð Þ þ Q sð Þ

n nx cos nxtð Þ; ð3Þ

€q tð Þ �
XNh

n¼1

� Q cð Þ
n n2x2 cos nxtð Þ � Q sð Þ

n n2x2 sin nxtð Þ: ð4Þ

For convenience, the Fourier coefficients are assembled in the fol-
lowing vectors:

~Q ¼ Q 0ð ÞT Q ðcÞ
1

� �T
Q ðsÞ

1

� �T
. . . Q ðsÞ

Nh

� �T� �T

: ð5Þ

Herein, ðÞT denotes the transpose. Substitution of Eqs. (2)–(4) into
Eq. (1) generally produces an error term considering that only a lim-
ited number of harmonics is taken into account. It is then required
that the original equation of motion is weakly enforced with respect
to suitable weighting functions. Following the Galerkin idea, the
base functions are utilized for this projection, which is known as
Fourier–Galerkin projection [5], and results in the following set of
nonlinear algebraic equations,

S xð Þ ~Q þ ~Fnl
~Q
� �

� ~Fex ¼: ~R ~Q ;x
� �

!! 0: ð6Þ

The Fourier coefficients of the forces, Herein, ~Fnl and ~Fex take a form
analogous to Eq. (5). In Eq. (6), ~R is the residual function, of which a
zero characterizes a forced response approximation for a certain
frequency x. SðxÞ is the dynamic stiffness matrix and can be
expressed as

SðxÞ ¼ D2ðxÞ �Mþ D1ðxÞ � Cþ D0ðxÞ � K; ð7Þ
with the frequency-domain derivative matrix

DðxÞ ¼

0 0 0 . . . 0 0
0 0 1 �x . . . 0 0
0 �1 �x 0 . . . 0 0
..
. ..

. ..
. . .

. ..
. ..

.

0 0 0 . . . 0 Nh �x
0 0 0 . . . �Nh �x 0

0
BBBBBBBBB@

1
CCCCCCCCCA
: ð8Þ

and � is the Kronecker product.
In Eq. (6), the coefficients of corresponding sine and cosine

functions are thus enforced to add up to zero, that is they are ‘bal-
anced’, hence the appropriate name ‘harmonic balance method’.

While ~Fex is usually given, the values of ~Q and ~Fnl are unknown
and are determined as the solution of Eq. (6). The solution is usu-
ally computed numerically and iteratively. The iterative scheme
starts with a well-chosen vector ~Q 0ð Þ. A crucial task is the compu-

tation of the fourier coefficients ~Fnl of the nonlinear forces. Closed-
form expressions of the nonlinear forces in the frequency domain
are only available in special cases. In the general case, the nonlin-
ear forces can be more easily evaluated in the time domain. For this
purpose, the Alternating Frequency/Time (AFT) method [6,7] is
very popular. This method can be summarized as

~Fnl ¼ DFT fnl iDFT ~Q
h i� �h i

; ð9Þ

1 In the literature, other widely used names for the method described here are the
Describing Function method and the method of Krylov–Bogoliubov–Mitropolsky.
Moreover, the prefix ‘multi’ or ‘high-order’ are often used for the harmonic balance
method in order to clarify the difference to the single-term variant which only
considers the fundamental harmonic.
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