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a b s t r a c t

In this study the Finite Element Method (FEM) on viscoelastic frames is presented. It is assumed that the
Creep function of the constituent material is of power law type, as a consequence the local constitutive
law is ruled by fractional operators. The Euler Bernoulli beam and the FEM for the frames are introduced.
It is shown that the whole system is ruled by a set of coupled fractional differential equations. In quasi
static setting the coupled fractional differential equations may be decomposed into a set of fractional
viscoelastic Kelvin–Voigt units whose solution may be obtained in a very easy way.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Finite Element Method (FEM) on viscoelastic structures is of rel-
evant interest in many engineering problems. The FEM on frames is
usually treated in literature by considering a local visco-elastic
stress strain constitutive relation. Classical constitutive relation
for visco-elastic materials employs combinations of purely elastic
and purely viscous elements (Kelvin Voigt unit). In order to obtain
a satisfactory solution for real viscoelastic material behavior, how-
ever, a large number of simple elements are required and hence a
large number of materials parameters. Instead, use of fractional
derivatives to describe viscoelastic materials leads, in a natural
way, to model real viscoelastic behavior using very few parameters
[1,2].

As a matter of fact, the order of differentiation of the strain
characterizes the material behavior [3]. Having viscoelastic materi-
als a non-integer value in the range [0,1], where the value zero
characterizes a solid material and the value 1 a Newtonian fluid.
Moreover, using this approach the material relaxation function fol-
lows a power-law decay instead of an exponential one, power-law
observed for a wide range of engineering materials how it has been
assessed by Nutting [4]. Based on this observation, starting from
the second part of the last century, a lot of theoretical [5–13] and
experimental researches [14–16] have been carried out confirming
the Nutting experiences and assessing that the local constitutive
viscoelastic law is ruled by fractional order operators. Starting from
fractional viscoelastic constitutive laws the time dependent frac-
tional differential equations of Eulero Bernoulli beam under
transversal loads has been treated in recent literature [17,18]. On

the other hand the FEM is a versatile method that allows us to
solve more complex problems. This issue is addressed in a recent
paper by Schmidt et al. [19].

This paper aims to give an insight on the quasi static analysis of
frames, discretized in finite elements, with local fractional
constitutive law and solving the fractional differential equations
in a very simple way that may be easily implemented in computer
codes.

Three main cases are treated that almost cover all the vari-
ous cases of engineering interest: (i) the frame is constituted by
a unique fractional viscoelastic material; (ii) the viscoelastic
frame is infilled with fractional viscoelastic devices, character-
ized by different power-law in the creep, to mitigate the total
response; and (iii) the frame is composed by two different
viscoelastic elements, such an example steel elements and
concrete elements (seismic walls), or base isolated frames with
viscoelastic rubber.

It is shown that in all these cases the coupled fractional differ-
ential equations in quasi static setting may be decoupled into a set
of fractional Kelvin Voigt elements whose solution may be
obtained in a very easy way in terms of Mittag Leffler series or
by using other available techniques to integrate single fractional
differential equations [20].

2. Preliminary concepts and definitions

The theory of viscoelastic hereditary materials is based upon
the knowledge of the so called Creep function, denoted as DðtÞ, that
is the strain history due to an unitary stress. By using the Boltz-
mann superposition principle the strain history eðtÞ due to the
stress history rðtÞ may be written in the form
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eðtÞ ¼ DðtÞr0 þ
Z t

0
Dðt � sÞ _rðsÞds ð1Þ

where r0 is the stress at t ¼ 0. An inverse relationship of Eq. (1) may
be assessed by means of the so called relaxation function, denoted as
EðtÞ that is the stress history due to an imposed unitary strain. Using
again the Boltzmann superposition principle we get

rðtÞ ¼ EðtÞe0 þ
Z t

0
Eðt � sÞ _eðsÞds ð2Þ

where e0 is the (assigned) strain at t ¼ 0. As soon as we assume for
EðtÞ a power law decaying function

EðtÞ ¼ Eb

Cð1� bÞ t
�b ð3Þ

being Eb;b the relevant parameters that characterize the material at
hand (obtained by best fitting based upon experimental data) and
Cð�Þ is the Euler Gamma function then Eq. (2) gives

rðtÞ ¼ EðtÞe0 þ EðbÞ CDb
0þeðtÞ

� �
ð4Þ

where the symbol CDb
0þeðtÞ

� �
is the so-called Caputo’s fractional

derivative of order b, that is

CDb
0þeðtÞ

� �
¼ 1
Cð1� bÞ

Z t

0
ðt � sÞ�b _eðsÞds ð5Þ

Without loss of generality in the following we suppose that the
system is quiescent at t ¼ 0 (i.e. r0 ¼ 0; e0 ¼ 0), in this way in
Laplace domain creep and relaxation are related each other by
the fundamental relation

DðsÞEðsÞ ¼ 1
s2

ð6Þ

being DðsÞ and EðsÞ the Laplace transform of DðtÞ and EðtÞ,
respectively.

Computing Laplace transform of the relaxation function, (3),
after some simple algebra we get

DðtÞ ¼ E�1
b

Cð1þ bÞ t
b ð7Þ

by inserting this expression in Eq. (1) and integrating by parts we
get

eðtÞ ¼ 1
Eb

Ib0þrðtÞ
� �

ð8Þ

where the symbol Ib0þrðtÞ
� �

is the so-called Riemann Liouville frac-

tional integral defined as

Ib0þrðtÞ
� �

¼ 1
CðbÞ

Z t

0
ðt � sÞb�1rðsÞds ð9Þ

It is worth noticing that for b ¼ 0, since CDb
0þeðtÞ

� � � e, then the
purely elastic behavior is restored. Moreover for b ¼ 1, since
CDb

0þeðtÞ
� � � _e, the behavior of purely Newtonian viscous fluid is
restored. For any other value of b : 0 < b < 1 a variety of fractional
viscoelastic behavior is evidenced. A wide discussion on this sub-
ject may be found in [21].

It is apparent that in the case in which the relaxation function is
that given in Eq. (3), as we assume a constant hydrostatic pressure
on the solid, as t ! 1 the volume will be zero and this is in con-
trast with the experimental evidence. In order to avoid this prob-
lem usually the relaxation function is assumed in the form

EðtÞ ¼ E0 þ Eb

Cð1� bÞ t
�b ð10Þ

in this way as t ! 1 the elementary volume under hydrostatic
pressure will remain finite. In this case Eq. (4) is enriched by one
purely elastic term that is

rðtÞ ¼ E0eðtÞ þ EðbÞ CDb
0þeðtÞ

� �
ð11Þ

The inverse relation of Eq. (10) in Laplace domain is not so elemen-
tary as in the case of E0 ¼ 0, since DðtÞ involves Mittag–Leffler
expansion and then a series of Riemann Liouville integrals appears.
This issue will be addressed later on.

Once the local constitutive laws has been assumed in Eq. (11),
then the Euler–Bernoulli beam with fractional constitutive law
may be derived.

Let the beam in Fig. 1, be referred to an anti-clockwise axes and
let z be the axis joining the centroids of the various transverse sec-
tions. Let x and y be the principal axes of the transverse sections.
Moreover let us suppose that the external loads per unit length
lie in the plane y—z denoted as pyðz; tÞ (transversal) pzðz; tÞ (axial).
Moreover let mðz; tÞ be the external moment per unit length, and
let us denote uyðz; tÞ the deflection of the fibers in the plane xy.
The elongation of the longitudinal fiber of length dz, is given as
dzeðx; y; z; tÞ and in Euler–Bernoulli hypothesis we write:

ezðx; y; z; tÞ ¼ ezðy; z; tÞ ¼ @uzðz; tÞ
@z

þ y
@/xðz; tÞ

@z

¼ @uzðz; tÞ
@z

� y
@2uyðz; tÞ

@z2
ð12Þ

where /xðz; tÞ ¼ � @uyðz;tÞ
@z is the rotation angle of the cross section.

By inserting Eq. (11) follows that the stress rz, for a beam at rest
at t ¼ 0 is given as

rzðx; y; z; tÞ ¼ rzðy; z; tÞ ¼ E0ezðtÞ þ Eb
CDb

0þezðtÞ
� �

¼ E0
@uz

@z
þ Eb

CDb
0þ

@uz

@z
ðtÞ

� �
� E0y

@2uy

@z2

� Eby CDb
0þ

@2uy

@z2
ðtÞ

 !
ð13Þ

The total axial force Nðz; tÞ is then given as

Nðz; tÞ ¼
Z
A
rzðy; z; tÞdA ¼ A E0

@uz

@z
þ Eb

CDb
0þ

@uz

@z
ðtÞ

� �� �
ð14Þ

The bending moment Mðz; tÞ is given as

Mðz; tÞ ¼ �
Z
A
yrzðy; z; tÞdA

¼ �Ix E0
@2uy

@z2
þ Eb

CDb
0þ

@2uy

@z2
ðtÞ

 ! !
ð15Þ

Fig. 1. Euler–Bernoulli beam reference system.
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