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a b s t r a c t

This paper investigates how uncertainties affect the modal parameters of a sandwich structure with a vis-
coelastic core, which is commonly used in both passive and hybrid control strategies. The viscoelastic
sandwich structural component is modelled using (1) the classical model proposed by Mead and
Markus and (2) a more complex model that has recently been proposed in the literature. The mechanical
behaviour of the viscoelastic core is described by fractional derivative operators. The uncertainties are
assumed to come from two sources. The first source of uncertainty is associated with the physical param-
eters of the constitutive model used to describe the dynamic behaviour of the viscoelastic core, which
should be characterised when solving the inverse problem for model calibration. The second source is
associated with a set of geometrical parameters and is considered to be linked to both manufacturing
processes and assembling–disassembling structural set-ups. A set of examples is performed using the
Monte Carlo Simulation analysis, allowing the measurement of the impact of typical sources of uncertain-
ties in modal predictions as well as providing means to make a comparative analysis between two vis-
coelastic sandwich models. Among other conclusions, it was found that the mean values of the modal
parameters do not change much for the different analyses performed, and the thickness of the viscoelas-
tic layer is the most critical variable because it affects both the modal frequency and the damping ratio.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Viscoelastic sandwich structures are laminated structures
which are composed by two or more rigid layers joined by soft lay-
ers that are usually made of polymeric materials. These structures
have become one of the most effective ways to be used in passive
vibration control strategies. The energy dissipation takes place
within the viscoelastic layers mainly due to shearing strains/stres-
ses [1]. Its dissipative characteristic has led this type of structural
component to be employed in many applications in aeronautical,
structural, automotive and naval industries.

The process of building a Computational Model (CM) for lami-
nated structures demands a suitable kinematic model such that
accurate strain fields can be obtained at reasonable computational
costs. Many researchers have adopted the theory introduced by
Mead and Markus [2] to describe the strain fields in a three-layer
beam with a viscoelastic core. Concerning model predictions for
damping, the model proposed by Mead and Markus presents some
inaccuracies that are associated with high shear strain levels

obtained within the viscoelastic core [3]. Therefore, some authors
have made alternative proposals to improve the Mead and Markus
theory. Douglas and Yang [4] modelled the face sheets as two inde-
pendent Euler beams and included both the shear deformation and
the rotary inertia for the elastic layers. The first order shear defor-
mation theory is considered in [2–14] inasmuch as it allows both
the transverse and axial displacements of the central core to be lin-
early dependent along its thickness. Bai and Sun [3] analysed the
influence of the slip at interface bonds between layers and con-
cluded that the constraining layers must deform independently.
Bai and Sun [3] also concluded that the use of a high order theory
in the modelling of the constrained viscoelastic core is needed. A
review of several theories for modelling sandwich structures with
applications in multilayer sandwich beams and shells are pre-
sented by Carrera and Ciuffreda [15] and by Hu et al. [16].

The more complex a CM gets, the higher the computational cost
it demands. Therefore, engineers/analysts have to face a trade-off
between model accuracy and computational costs when building
a CM for structures containing viscoelastic laminates, viscoelastic
layers or any viscoelastic subcomponents. Furthermore, no matter
how complex one builds a CM, modelling uncertainties will always
be one of the key-factors when using model predictions for risk
analysis, decision-making processes and Engineering designs.
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Uncertainties in a CM may have different sources such as man-
ufacturing processes, natural variability, unknown boundary con-
ditions, and unknown excitation forces. Some of these can be
mitigated by deeper investigations based on gathering measured
data, improving assembling processes and estimating model
parameters via inverse analysis. More specifically, when dealing
with viscoelastic materials, it is important to mention that the
dynamic response of a structure can be influenced by uncertainties
in the structure of the constitutive model used to describe its beha-
viour and also by uncertainties in constitutive model parameters.
Moreover, simplifications and/or approximations in the constitu-
tive and kinematic models may not lead to a full representation
of the strain mechanisms. All of this generates uncertainties when
computing model predictions of laminated structures with vis-
coelastic core [17].

To the authors’ best knowledge, there is no paper addressing
uncertainty quantification analysis for laminates containing vis-
coelastic layers described by fractional derivative constitutive
models. The aim of the present paper is to get more robust models
to be used for design and optimization. This paper performs the
propagation of uncertainties, which were obtained out of an
experimental-set up [18], in two different models for laminated
structures with viscoelastic core, namely: Mead and Markus and
a more complex model recently proposed by Arvin et al. [14].
The impact of uncertainties on modal parameters are analysed.
As the influence of model parameters on modal parameters are
ruled by nonlinear relationships, this uncertainty quantification
analysis for viscoelastic laminate beam model are performed by
Monte Carlo simulations. More specifically, the modelling uncer-
tainties are considered to be associated with manufacturing pro-
cess, assembling and disassembling components and constitutive
viscoelastic model parameters.

In the following sections, the constitutive model formulation
based on fractional derivative operators with five parameters is
first described, and it is followed by the mathematical formulation
for the two kinematic models. The models are numerically imple-
mented through the Finite Element Method (FEM) and the compu-
tation of the modal parameters is performed by means of an
iterative optimization process. The modelling of uncertainties is
introduced to stablish the procedure to obtain statistical informa-
tion from the random modal parameters, which are used in the
uncertainty propagation analysis for the two models of viscoelastic
sandwich beam. The analyses of four uncertainty sources related to
the constitutive parameters and to the geometric dimensions are
presented, and the respective comparisons between the kinematic
models are discussed, followed by concluding remarks.

2. Constitutive model formulation

Fractional derivative equations have been used to represent the
mechanical behaviour of several materials. As for viscoelastic
materials, the use of fractional derivative equations has found
many applications such as the ones presented in [19–27], to cite
a few. The general form for 1-D constitutive models for a Viscoelas-
tic Material (VEM) based on time domain fractional derivative
operators can be expressed as follows [21,22]

rðtÞ þ b1
db1

dtb1
rðtÞ þ b2

db2

dtb2
rðtÞ þ � � � þ bn

dbn

dtbn
rðtÞ

¼ a0eðtÞ þ a1
da1

dta1
eðtÞ þ a2

da2

dta2
eðtÞ þ � � � þ am

dam

dtam
eðtÞ ð1Þ

where fa1; . . . amg and fb1; . . . bng are constant parameters of the
material model, t is the time, 0 < br 6 1 and 0 < as 6 1 are the frac-
tional derivative orders for the stress rðtÞ and strain eðtÞ fields,
respectively. In case all parameters fbr;asg are integer numbers,

Eq. (1) corresponds to a conventional VEM model [28]. Concerning
the fractional derivative operator dm=dtm used in Eq. (1), it is defined
as follows [27]

dm

dtm
½vðtÞ� � 1

Cð1� cÞ
d
dt

Z t

0

vðt � sÞ
sm

ds ð2Þ

where Cð�Þ is the Gamma function and m is the order of the frac-
tional derivative operator, 0 6 m 6 1 [21]. Eq. (2) clearly presents
the hereditary characteristic of the fractional operator due to the
fact it uses the entire history of the function vðsÞ to compute its
fractional derivative dm

dtm
½vðtÞ� at current time t.

A detailed analysis of fractional constitutive models for vis-
coelasticity from the point of view of the thermodynamics of irre-
versible processes is presented by Lion [29]. Pritz [19,23] presents
analyses for two constitutive models derived from Eq. (1). More
specifically, Pritz [19,23] considers models defined by 4 and 5 con-
stitutive parameters for which br ¼ 0 for r P 3 and as ¼ 0 for
s P 2. Concerning the constitutive model with five parameters
[19], it is able to provide an asymmetric loss factor peak and
approximately constant loss factor at high frequencies. This model
is presented in Eq. (3)

rðtÞþsb db

dtb
rðtÞ¼G0eðtÞþG0sb

db

dtb
eðtÞþðG1�G0Þsa da

dta
eðtÞ ð3Þ

where s is the relaxation time, and G0 and G1 are the static and
dynamic modules, respectively. The model obtained when a ¼ b
in Eq. (3) corresponds to the fractional Zener model [19,27]. Fur-
thermore, in case a ¼ b ¼ 1, the constitutive model defined by Eq.
(3) yields the classical Zener model [27].

The complex modulus ~GðjxÞ for the constitutive model in Eq.
(3) can be derived by the application of the Fourier transform to
both sides of Eq. (3) and recasting it as follows

~rðjxÞ ¼ G0 1þ ðd� 1Þ ðjxsÞa
1þ ðjxsÞb

 !
~eðjxÞ ¼ ~GðjxÞ~eðjxÞ ð4Þ

where d ¼ G1=G0 is the ratio between the dynamic and static mod-
ulus, ~VðjxÞ denotes the Fourier transform of the function vðtÞ; x is
the circular frequency in rad/sec and j ¼

ffiffiffiffiffiffiffi
�1

p
is the imaginary num-

ber. The complex modulus is a frequency dependent operator and
its constitutive parameters h ¼ fG0;d; s;a; bg should be obtained
by appropriate inverse analysis [18,30,31].

3. Mathematical models for laminated structures with
viscoelastic core

Although commercial softwares may provide refined discrete
models for this type of structural component, one may find in
the literature several finite element models to describe the physi-
cal behaviour of laminates with a viscoelastic core sandwiched
between elastic layers. This is inherently associated to the fact that
an increase in model refinement is linked to an increase in compu-
tational costs. Furthermore, this type of component is in general a
subsystem of a larger structural system that has to be controlled or
optimised and whenever possible the Engineering team should use
low order models that are still accurate enough for the applications
of interest. Several authors proposed models to describe the
dynamic behaviour of this type of viscoelastic laminate structural
component such as Mead and Markus [2], Bai and Sun [3], Babber
et al. [32], Chen and Chan [33], Arvin et al. [14], Won et al. [34], to
cite a few.

Let us consider a slender multilayer laminate structure B
occupying the region ½0; L� � ½0; bh� � ½0; bw� � R3 and composed of
a viscoelastic core sandwiched between the two elastic layers. This
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