
Optimization of hardening/softening behavior of plane frame structures
using nonlinear normal modes

Suguang Dou a,⇑, Jakob Søndergaard Jensen b

aDepartment of Mechanical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
bDepartment of Electrical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark

a r t i c l e i n f o

Article history:
Received 28 May 2015
Accepted 2 November 2015
Available online 1 December 2015

Keywords:
Finite element
Structural optimization
Nonlinear normal mode
Harmonic balance
Adjoint method
Hardening/softening behavior

a b s t r a c t

Devices that exploit essential nonlinear behavior such as hardening/softening and inter-modal coupling
effects are increasingly used in engineering and fundamental studies. Based on nonlinear normal modes,
we present a gradient-based structural optimization method for tailoring the hardening/softening
behavior of nonlinear mechanical systems. The iterative optimization procedure consists of calculation
of nonlinear normal modes, solving an adjoint equation system for sensitivity analysis and an update
of design variables using a mathematical programming tool. We demonstrate the method with examples
involving plane frame structures where the hardening/softening behavior is qualitatively and
quantitatively tuned by simple changes in the geometry of the structures.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Linear normal modes (LNMs) play a significant role in design
optimization of mechanical components for their dynamic
response. When applied to nonlinear mechanical systems, this
may lead to sub-optimal designs because of the unresolved
nonlinear behavior such as frequency-energy dependence and
internal resonances. Moreover, a variety of novel applications that
exploit essentially nonlinear behavior are increasingly used, e.g. in
engineering for vibration mitigation [1–3], and particularly in non-
linear micromechanical and nanomechanical resonators for energy
harvesting [4], frequency stabilization [5,6], frequency division [7],
etc. For a comprehensive review of nonlinear micro- and nanores-
onators, the reader may consult [8,9]. Since structural optimization
of these inherently nonlinear devices cannot be fully achieved
using linear structural dynamics, it is of considerable value to
develop efficient techniques for structural optimization based on
nonlinear structural dynamics.

As a nonlinear analog of LNMs, nonlinear normal modes (NNMs)
provide a systematic way to investigate the nonlinear behavior in
nonlinear structural dynamics, particularly frequency-energy
dependence and modal interaction [10]. The resulting NNMs also
provide valuable insight into the damped system. For example,
the temporal evolution of the instantaneous frequencies in free

decay responses follows NNMs of the undamped system. Based
on this feature, free decay tests in conjunction with continuous
wavelet transform have been used in experimental analysis of
NNMs [11]. Further, the nonlinear forced resonances are in the
neighborhood of NNMs. This feature is of practical importance in
engineering design, e.g., dynamic tests of NNMs in forced vibrations
[12] and efficient optimization of nonlinear resonance peaks
[13–15]. Computation of NNMs using numerical methods [16],
particularly the harmonic balance method [17–19], is especially
attractive for their abilities to be combined with nonlinear finite
element models, which facilitate element-based design parameter-
ization of structural geometry and further application of advanced
structural optimization (e.g. shape and topology optimization)
[20]. In a previous study, based on the normal forms linked to NNMs
[21,22], we studied structural optimization of hardening/softening
behavior and nonlinear modal coupling effects [23], where the
analysis and optimization is limited to mechanical systems with
polynomial-type nonlinearity.

In this paper, we extend the current structural optimization
procedure to the more general case of modal analysis of
nonlinear mechanical systems. For general applicability, NNMs are
numerically computed using the harmonic balance method [13] in
conjunction with the alternating frequency/time domain method
(AFT) [24], which has the ability to handle complex nonlinearities.
The analysis method is applicable to NNMs of conservative
systems, such as nonlinear systems with geometric nonlinearity
and polynomial-type material nonlinearity. For NNMs of
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nonconservative systems such as nonlinear systems with friction
and hysteretic material nonlinearities, the reader can refer to [25].
Based on the resulting NNMs, we propose a gradient-based struc-
tural optimization formulation for tailoring hardening/softening
behavior. For a relatively comprehensive review of the hardening/
softening behavior, the reader can refer to [22,26]. Examples
involving plane frame structures are used to demonstrate that both
quantitative and qualitative tuning of hardening/softening behavior
(e.g. from softening behavior to hardening behavior, and vice versa)
can be achieved by a simple manipulation of the structural
geometry. In the analysis, these structures are modeled with
two-dimensional beam elements based on the geometrically exact
theory [27,28], which does not make any approximation of the
trigonometric functions arising in kinematic relations and hence
can be used for vibrations with large in-plane motion. Since NNM
is a nonlinear analogy of LNM, the proposed optimization method-
ology can also be viewed as an extension of the optimization of
eigenvalue problems in linear structural dynamics (e.g., eigenvalues
and eigenvectors) [29–32].

The article is organized as follows. First, computation of NNM
using the incremental harmonic balance (IHB) in conjunction with
the alternating frequency/time domain method is presented in
Section 2. In Section 3, a general optimization problem for tuning
NNM with hardening/softening behavior and its sensitivity analy-
sis are formulated. Optimization examples for tailoring the harden-
ing/softening behavior of plane frame structures are presented in
Section 4 and conclusions are drawn in Section 5.

2. Nonlinear modal analysis

An ideal starting point for numerical computation of NNM is
continuation of periodic responses in the neighborhood of a LNM.
In this case, the NNM reduces to a LNM when the vibration ampli-
tude is sufficiently small. In computation of the NNM for plane
frame structures, IHB is applied to a nonlinear finite element
model. In contrast to the time marching method widely used in
nonlinear structural dynamics, IHB is an efficient way to compute
the time-periodic response by representing it in Fourier series and
solving a set of nonlinear algebraic equations in terms of the Four-
ier coefficients and the frequency. In the continuation, with a given
initial guess or the responses in previous steps, the unknown
response in the neighborhood is first predicted and then iteratively
corrected.

2.1. Harmonic balance method

The equation of motion of a discretized undamped mechanical
system (e.g., a nonlinear finite element model without dissipation
and load) is assumed as

M€qðtÞ þ gðqðtÞÞ ¼ 0 ð1Þ
where qðtÞ denotes time-periodic response to be computed,M is the
symmetric and positive definite mass matrix, and gðqÞ denotes the
nonlinear stiffness force. Further, the differentiation of gðqÞ with
respect to q, denoted as KðqÞ, is the symmetric tangent stiffness
matrix.

First, a new time scale s is introduced as s ¼ xt, where x
denotes the fundamental frequency of the response in radians
per second. So the equation of motion in Eq. (1) can be rewritten as

x2Mq00ðsÞ þ gðqðsÞÞ ¼ 0 ð2Þ
where the prime indicates the differentiation with respect to the
new time scale s. It is noted that with the new time scale, the period
of the system response is normalized to 2p, and thereby the deriva-
tion and numerical implementation does not require the real value

of the period of the response, which can be calculated as T ¼ 2p=x
whenx is given. Then the system response is expanded into Fourier
series. For the displacement of one degree of freedom, e.g. qiðsÞ, its
Fourier series is expressed as

qiðsÞ ¼ ai0 þ
XNH

n¼1

ðain cosðnsÞ þ bin sinðnsÞÞ ð3Þ

where i denotes the ith degree of freedom in the finite element
model, n denotes the nth-order harmonic and NH is the highest
order of retained harmonics. Generally, the value of NH can be
decided by performing a convergence study of the solution with
respect to NH . A guideline for selecting the value of NH based on
two conditions: completeness and balanceability, can be found in
[33,34]. In matrix form, Eq. (3) is written as

qiðsÞ ¼ sqi ð4Þ
where s and qi represent the Fourier basis and the retained Fourier
coefficients of qiðsÞ, defined as

s ¼ 1 cos s � � � cosðNHsÞ sin s � � � sinðNHsÞ½ �
qi ¼ ai0 ai1 � � � aiNH bi1 � � � biNH

� �T ð5Þ

It is noted that s is of dimension 1� 2ðNH þ 1Þ and qi is of
dimension 2ðNH þ 1Þ � 1. Based on the Fourier series of the dis-
placement of one degree of freedom, the Fourier series of the dis-
placements of all degrees of freedom are now written as

qðsÞ ¼ Sq ð6Þ
where qðsÞ of dimension ND � 1 represents the displacements with
ND being the number of degrees of freedom in the model, S of
dimension ND � ðNDð2NH þ 1ÞÞ represents a set of Fourier basis,
and q of dimension ðNDð2NH þ 1ÞÞ � 1 represents the corresponding
Fourier coefficients by projecting qðsÞ onto S, i.e.

S ¼ diag ðs; . . . ; sÞ ¼
s

. .
.

s

264
375; q ¼ qT

1 � � � qT
ND

� �T ð7Þ

To determine the Fourier coefficients and the frequency of the
response, the Galerkin method is applied to the ordinary differen-
tial equation in Eq. (2). By substituting Eq. (6) into Eq. (2), multiply-
ing Eq. (2) with ST and performing integration with respect to s on
½0;2p�, an algebraic equation system is obtained as

x2Mqþ g ¼ 0 ð8Þ
where the barred terms M and g are given as

M ¼ 1
2p

Z 2p

0
STMS00 ds; g ¼ 1

2p

Z 2p

0
STgðqðsÞÞds ð9Þ

It is noted that Eq. (8) can be viewed as the frequency-domain
counterpart of the equation of motion in Eq. (1), and M and g
can be interpreted as the frequency-domain counterparts of M
and g, respectively.

Since the algebraic equation system in Eq. (8) is nonlinear, we
use an iterative Newton–Raphson method to solve it. The proce-
dure of numerical implementation is described later in the contin-
uation approaches, whereas the incremental form of Eq. (8) is
given here as

x2Mþ K
� �

Dqþ 2xMq
� �

Dx ¼ � x2Mqþ g
� � ð10Þ

where K is the frequency-domain counterpart of the tangent stiff-
ness matrix K, and this relation is derived as

K ¼ 1
2p

Z 2p

0
ST

@gðqðsÞÞ
@qðsÞ

@qðsÞ
@q

ds ¼ 1
2p

Z 2p

0
STKðqðsÞÞSds ð11Þ
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