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a b s t r a c t

A transfer-matrix method is developed to determine more accurate solutions to the free vibration charac-
teristics of a tapered Bernoulli–Euler beam. The roots of the differential equation are determined by using
the Frobenius method to obtain the power series solution for bending vibrations. This study examines
the effect of various taper ratios on the eigenpairs of these beams, in which the height of the cross-
section along the length is linearly reduced. In addition, the number of terms in the power series is inves-
tigated in detail for each taper ratio because the required number of terms depends upon the taper ratio.

� 2015 Elsevier Ltd. All rights reserved.

1. Introductions

The analysis of bending vibrations for non-uniform beams (i.e.,
stepped or tapered beams) has been performed by a number of
researchers using various approaches, such as the finite element,
transfer-matrix, and other approximate methods [1–25]. The use
of non-uniform beams to analyze the free vibration characteristics
has been widely applied to engineering applications. Generally, a
non-uniform beam is regarded as a tapered beam, which can be
modeled by an idealized stepped uniform beam [23] and the
appropriate shape function [1–16,18,21,22]. However, the vibra-
tion analysis for a tapered beam generally approximates the shape
function because this approach can produce more accurate results
and can simplify the computation. In addition, most studies
assume that the cross-sectional dimensions along the length of a
beam are linearly reduced [2,4,5,10,15,16,21,22,24]. In this regard,
when the cross-sectional dimensions are assumed to be small in
comparison with the total length of the beam element, the beam
analysis can be simplified to a Bernoulli–Euler problem by ignoring
the rotary inertia and shear deformation [6,8,13].

A dynamic stiffness method was implemented by Banerjee et al.
[3], Leung and Zhou [5], Spyrakos and Chen [12] and Banerjee [23]
to obtain the natural frequencies and mode shapes for such beam
analysis problems. The method used by Banerjee et al. [3] involved
a power series solution and used the Frobenius method to compute
the roots of the corresponding differential equation. The natural

frequencies and mode shapes, which were determined using the
finite element method, are shown to provide excellent series con-
vergence for tapered beams when considering the centrifugal
force. The Rayleigh–Ritz method was used by Zhou and Cheung
[1,6], Zhou [7] and Lu et al. [17] to solve for the bending vibrations
of tapered beams, plates and multiple-stepped composite beams,
respectively. The differential transform method was used by Ozgu-
mus and Kaya [18] and Rajasekaran [14], and the transfer-matrix
method was used by Stafford and Giurgiutiu [19], Attar [20], and
Takahashi [25]. Gunda et al. [22] studied the effects of the centrifu-
gal force and the taper ratio on the free vibration characteristics of
high speed rotating beams using hybrid stiff-string-polynomial basis
functions, and the results obtained using a new finite element
approach have been shown to provide excellent series convergence.

For the problems described above, some researchers obtained
the roots of the differential equation by using the power series
solution obtained by the Frobenius method [3,10,15,22,23], and
the more accurate roots have been computed successfully. There-
fore, in this study, the Frobenius method is used to compute
the roots of the differential equation, and the transfer-matrix
method is used to determine the natural frequencies and mode
shapes for the bending vibrations of various tapered beams. The
transfer-matrix method can be used as a powerful numerical tool
to investigate the vibration characteristics of beam elements. How-
ever, the use of the transfer-matrix method, which is used in the
proposed method, has not been studied even though one can
obtain the infinite natural frequencies and mode shapes using a
single element for the bending vibrations of various tapered
beams.

http://dx.doi.org/10.1016/j.compstruc.2015.11.007
0045-7949/� 2015 Elsevier Ltd. All rights reserved.

⇑ Corresponding author. Tel.: +82 31 249 9811; fax: +82 31 244 6300.
E-mail address: jylee@kgu.ac.kr (J.Y. Lee).

Computers and Structures 164 (2016) 75–82

Contents lists available at ScienceDirect

Computers and Structures

journal homepage: www.elsevier .com/locate /compstruc

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compstruc.2015.11.007&domain=pdf
http://dx.doi.org/10.1016/j.compstruc.2015.11.007
mailto:jylee@kgu.ac.kr
http://dx.doi.org/10.1016/j.compstruc.2015.11.007
http://www.sciencedirect.com/science/journal/00457949
http://www.elsevier.com/locate/compstruc


The objective of this study is to develop a transfer-matrix
method that can be used to calculate more accurate solutions to
the bending vibration characteristics of Bernoulli–Euler beams
with various taper ratios and, subsequently, to determine the
eigenpairs for a tapered beam in which the height of the cross-
section of the rectangular beam is linearly reduced along its length.
By using the differential equation, shear force and bending
moment, which are deduced by different variational principles,
the transfer-matrix method is formulated. The proposed method
does not separate the mass and stiffness matrices, but this method
has the same essential and important features of the conventional
transfer matrix. Moreover, one of the more advantageous features
of the present theory is that the use of a single element can pro-
duce infinite natural frequencies and mode shapes. However, the
proposed method uses a truncated polynomial series, such as the
Frobenius method, and depends on the number of terms in the
power series for determining the more accurate roots of the differ-
ential equation. When expanding the number of terms in the
power series to infinity, the roots of the differential equation
become exact. However, to produce fast and efficient results, the
number of terms in the power series needs to be investigated.
Numerical results for validating the accuracy of the proposed
method are compared with those presented in [3], and the number
of terms in the power series required to increase the efficiency of
the computation is investigated by a parametric study with respect
to the taper ratios.

2. Theory

For a tapered Bernoulli–Euler beam, which is examined in this
study, the total beam length is assumed to be significantly larger
than its cross-sectional dimensions. Therefore, the shear deforma-
tion and rotary inertia can both be ignored, and only the bending
vibration needs to be investigated. The notation and coordinate
systems shown in Fig. 1 are used to solve for the free vibration

characteristics of a tapered Bernoulli–Euler beam, where XYZ is
the global coordinate system, L is the total length of the beam ele-
ment, and c is the taper ratio.

The governing differential equation, shear force, and bending
moment for the bending vibration of a tapered Bernoulli–Euler
beam can be deduced by different variational principles, and the
strain ðUÞ and kinetic ðTÞ energies are expressed as follows [6]:

U ¼ 1
2

Z L

0
EIðxÞðw00Þ2dx ð1Þ

and

T ¼ 1
2

Z L

0
mðxÞð _wÞ2dx ð2Þ

where EIðxÞ; mðxÞ and IðxÞ are the variation of the bending stiffness,
the mass per unit length according to the taper ratio and the geo-
metric moments of inertia for the beam cross-section according to
the taper ratio, respectively, and E is the elastic modulus of the
beam. In addition, wð¼ wðx; tÞÞ is the in-plane bending displace-
ment. The prime and the dot symbols denote differentiation with
respect to the distance x and time t, respectively. The variation of
the bending stiffness and the mass for a tapered beam can be
expressed as follows [8,10]:

EIðxÞ ¼ EI0 1� c
x
L

� �3
ð3Þ

and

mðxÞ ¼ m0 1� c
x
L

� �
ð4Þ

where EI0 andm0 are the bending stiffness and mass per unit length,
respectively, for a uniform beam ðc ¼ 0Þ.

By the variational principle, the differential equation can be
expressed as follows [21]:

ðEIðxÞw00Þ00 þmðxÞ €w ¼ 0 ð5Þ
In addition, the shear force and bending moment can be defined

by the following equations:

Vðx; tÞ ¼ �ðEIðxÞw00Þ0 ð6Þ
and

Mðx; tÞ ¼ EIðxÞw00 ð7Þ
where Vðx; tÞ is the shear force, and Mðx; tÞ is the bending moment.

Assuming harmonic vibrations with angular frequency (xÞ,
wðx; tÞ ¼ WðxÞ cosxt ð8Þ
where WðxÞ represents the amplitudes of wðx; tÞ.

By substituting Eq. (8) into Eq. (5), the equation can be simpli-
fied as follows:

EIðxÞW 0000 þ 2EI0ðxÞW 000 þ EI00ðxÞW 00 �mðxÞx2W ¼ 0 ð9Þ
where W ¼ WðxÞ.

By substituting Eqs. (3) and (4) into Eq. (9), the differential
equation can be simplified in a nondimensional form as follows:

ð1� fÞ3W 0000 � 6ð1� fÞ2W 000 þ 6ð1� fÞW 00 þ �x2ð1� fÞW ¼ 0 ð10Þ
where

f ¼ c�x; �x2 ¼ �m0x2L4

EI0c4
ð11Þ

In addition,W ¼ WðfÞ; �x is the nondimensional angular frequency,
�xð¼ x=LÞ is the nondimensional coordinate, and the parameter for
the distance is x.

Eq. (10) can be simplified as follows:
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Fig. 1. Notation and coordinate system used for a tapered Bernoulli–Euler beam:
(a) geometry of the tapered beam, (b) side view, and (c) top view.
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