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a b s t r a c t

A constrained interval optimization model is proposed for the optimization of uncertain structures with
their mechanical performance indices described as the objective and constraint functions of the design
vector and interval uncertain parameters. Present indirect approaches for solving such interval optimiza-
tion models by converting them into deterministic ones will result in the loss of uncertainty information
and deviate from the original intention of realistically modeling engineering optimization problems. To
overcome these shortcomings, a novel optimization algorithm is proposed for directly solving the
nonlinear constrained interval optimization models based on a novel concept of the degree of interval
constraint violation (DICV) and the DICV-based preferential guidelines. A nested genetic algorithm
(GA) is developed to realize the direct interval ranking of various design vectors. The outer layer GA
locates the optimal solution based on direct interval ranking. The inner layer GAs integrated with
Kriging technique compute the intervals of the mechanical performance indices of every design vector
in the current population of the outer layer GA. The validity and superiority of the proposed direct
interval optimization algorithm was verified by three numerical examples. Finally, the proposed
direct interval optimization method was applied to the optimization of the cone ring fixture with
uncertain material properties in a large turbo generator aimed at moving its natural frequencies away
from the exciting one. The results demonstrated its feasibility and effectiveness in optimizing practical
engineering structures under uncertainties.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In the design of engineering structures, it is often necessary to
optimize their key dimension parameters to achieve excellent
mechanical properties. To ensure the reliability and robustness
of the optimized parameter schemes for engineering structures,
the uncertainties inherent in their material properties, manufac-
turing errors, loading conditions and so on should be considered
in the mathematical modeling of the structural optimization
problems because these uncertainties will result in the fluctua-
tions of their mechanical properties [1,2]. The fuzzy set method
[3,4] and probabilistic method [5] are often utilized to model
the uncertainties in structural optimization. However, it is often
difficult and expensive to specify a precise probability distribu-
tion or membership function for an uncertain parameter in engi-
neering practice. And even small deviations from the real
distribution for an uncertain parameter may lead to large errors
in the computed probability failure to meet structural require-

ments [6–8]. In order to overcome the shortcomings of fuzzy
and probabilistic methods for modeling uncertainties, scholars
began their research work on non-probabilistic modeling of
uncertainties [9–11]. In this situation, the structural optimization
based on interval theory have recently attracted great interest
from scholars all over the world due to the fact that only the
upper and lower bounds of the uncertain parameters are required
for the construction of interval optimization models [12–15]. For
example, Elishakoff et al. [16–18] have carried out a lot of fruitful
research work in this field. They proposed a design approach for
structural optimization with uncertain but bounded parameters
and formulated the problem of identifying the worst responses
of a structure with respect to the uncertain parameters as an
anti-optimization problem (namely, the inner layer optimization
in this paper), which resulted in a two-level optimization
problem. They replaced the anti-optimization for searching
the worst combination of uncertain parameters by systematic
searches along the vertices of the uncertain domain in optimizing
truss structures. Faria et al. [19–21] later applied the
anti-optimization technique to the optimization of composite
structures considering load uncertainties.
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Interval optimization algorithms are of vital importance to real-
ize the structural optimization based on interval model. Over the
past decades, intensive research efforts have been focused on inter-
val linear programming. Ishibuchi and Tanaka [22] investigated the
linear programming problem with interval coefficients in the
objective function. They proposed a definition of interval order
relation and converted the interval optimization problem into a
deterministic multiobjective one with crisp objective functions.
Tong [23] investigated the linear programming problem with both
the coefficients of objective and constraints being interval num-
bers, and obtained the possible interval of the solution by taking
the maximum and minimum value range inequalities as constraint
conditions. Huang et al. [24] proposed a two-step method (TSM)
for solving the interval linear programming problems, which
allowed the uncertain information to be directly communicated
into the optimization process and resulting solutions such that
decision alternatives could be generated through the interpreta-
tion of interval solutions. However, part of the optimum solutions
obtained by TSM may go beyond the decision space in some cases.
To avoid this shortcoming, Wang and Huang [25] proposed an
improved method by introducing extra constraints in the solution
process. Inuiguchi and Sakawa [26,27] proposed the minimax
regret solution to linear programming problems with an interval
objective function, which were further extended to the multiobjec-
tive linear programming problems with interval objective func-
tions coefficients by Rivaz and Yaghoobi [28]. Averbakh and
Lebedv [29] proved that the computational complexity of minimax
regret linear programming was NP-hard. Sengupta et al. [30] con-
verted an interval linear programming problem into a determinis-
tic one based on a satisfactory crisp equivalent system of an
inequality constraint with interval coefficients, and then solved
the problem after conversion by conventional linear programming
techniques. Lai et al. [31] defined the non-inferior solutions to
interval linear programming models based on two interval order
relations. Oliveira and Antunes [32] conducted an illustrated
review of multiobjective linear programming models with interval
coefficients.

In the above linear interval programming methods, the
objective and constraint functions are given in analytical forms.
However, the objective and constraints corresponding to the
mechanical performance indices are often nonlinear for most of
the structural optimization problems, the values of which are usu-
ally computed by numerical simulations. Hence, the nonlinear
interval programming approaches developed in recent years have
exhibited much more attractive prospect for the optimization of
uncertain structures. Lombard and Haftka [33] proposed a
cycle-based method alternating between optimization and anti-
optimization to solve the two-level optimization problem, in
which the inner layer anti-optimization problem should be solved
many times at each iterative step of the outer layer design
optimization. Gurav et al. [34] further proposed an enhanced
cycle-based method that utilized the parallel computation
technique to reduce the computational cost in the inner layer
anti-optimization. Although the idea of the cycle-based method
is simple and it is simple to implement, it cannot rapidly converge
when the anti-optimal solution strongly or nonlinearly depends on
the design variables. Moreover, the cycle-based approaches cannot
handle the interval nonlinear optimization problems with both
objective and constraints being functions of design variables and
uncertain parameters. Hu and Wang [35,36] proposed new
arithmetic and order relations for interval numbers that had the
property of comparability, based on which they presented two
methods for solving nonlinear programming problems with inter-
val objective functions. One method firstly converted a nonlinear
interval programming problem into two traditional nonlinear
programming problems and solved them sequentially while the

other firstly determined the set of feasible solutions and then
obtained the optimal solution based on the comparison of their
objective values. However, their approaches are designed only for
problems with analytical objective and constraint functions. Chen
and Wu [37] proposed an interval optimization method for opti-
mizing the dynamic responses of uncertain structures with natural
frequency constraints, which firstly transformed the interval
optimization model into a deterministic one based on the first
order Taylor expansion and then solved the deterministic model
by traditional nonlinear optimization algorithm. However, their
approach is limited to the cases with interval parameters of small
uncertainty level since it ignores the higher order terms in Taylor
expansion. Jiang et al. [38–42] proposed a series of algorithms for
solving nonlinear interval optimization problems. They firstly
transformed the interval objective and constraint functions into
deterministic ones based on possibility degree of interval, and fur-
ther transformed them into unconstrained single-objective deter-
ministic optimization problems by weighting and penalty
function method, which were then solved by various nonlinear
programming algorithms. Different from the researches that treat
every uncertain parameter as an isolated interval, Jiang et al. [43]
also proposed a nonlinear interval programming method that
could handle uncertain optimization problems when there were
dependencies among interval variables. They described the uncer-
tain domain as a multidimensional parallelepiped interval model
with the single-variable uncertainty depicted as a marginal inter-
val while the degree of dependencies among the interval variables
depicted as correlation angles and correlation coefficients. In the
solution process, they still firstly converted the interval model into
a deterministic one based on possibility degree of interval, and
then solved the resulting deterministic model by iterative
algorithm. Li et al. [44] proposed an interval multi-objective
optimization method for structures based on adaptive Kriging
approximations, which transformed the interval model into a cor-
responding nested deterministic multiobjective one and solved the
deterministic model based on non-dominated sorting genetic algo-
rithm (NSGA2) and adaptive Krigings. To save the computational
costs in the interval optimization of structures, Elishakoff et al.
[45–47] developed a series of inner layer anti-optimization
approaches based on interval analysis. In order to reduce or
eliminate the overestimations due to the so-called dependency
phenomenon arising in the classical interval analysis, they intro-
duced the parameterized interval analysis and the improved inter-
val analysis via Extra Unitary Interval, which could efficiently solve
the set of governing algebraic interval equations in statics [48].
Cheng et al. [49] proposed an interval multiobjective optimization
approach of structures based on radial basis function, interval anal-
ysis and NSGA2, which transformed the interval multiobjective
optimization model into a deterministic one and eliminated the
inner layer optimization based on interval analysis. Wu et al.
[50] combined the Taylor inclusion function and interval bisection
algorithm to eliminate the inner layer optimization for computing
the interval bounds of objective and constraint functions, which
was proved to be superior to conventional interval analysis for
the interval optimization of vehicle suspensions.

As can be seen from the above literature review, most of the
previous approaches for solving the nonlinear interval optimiza-
tion model are indirect approaches. Specifically, they firstly con-
vert interval constraints into deterministic ones by prescribing
their acceptable possibility levels, and then solve the resulting
model by deterministic optimization algorithms [38–44,49]. How-
ever, the determination of acceptable possibility levels for con-
straints in the model conversion procedure is usually subjective
and optional. And different acceptable possibility levels will result
in different solutions. On the other hand, the process of converting
an interval optimization problem into a deterministic one will
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