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a b s t r a c t

In paper the design sensitivity analysis of dynamic characteristics of structures with viscoelastic (VE)
dampers is considered. The dampers are modeled using the classical rheological model and the rheolog-
ical model with fractional derivatives. The design sensitivity is analyzed by using direct differentiation
method and adjoint variables method. The formulae enabling the calculation of sensitivity of the first
and the second order with respect to chosen design parameters have been derived. Sensitivity analysis
of eigenvalues, eigenvectors and dynamic characteristics such as natural frequencies and non-
dimensional damping ratios are presented. The correctness of the presented formulae is illustrated in
examples.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Design sensitivity analysis quantifies the influence of changes of
parameters of structures or systems on the quantities which
measure their performance. The design sensitivity analysis of
structures and mechanical systems is a very important part of
the solution procedure in many engineering problems such as
optimization of structures, parametric identification, structural
health monitoring, model updating [1], structural reliability,
damage detection [2] and other ones. The concept of stochastic
sensitivity was proposed by Szopa in [3]. Recently, the idea of
the so-called global sensitivity analysis has been developed in
[4]. In paper [1], the authors pointed out that the sensitivity-
based method is probably most successful in the model updating,
in comparison with other ones.

Sensitivity methods and problems are reviewed, for example in
[5]. Computational methods for sensitivity analysis, particularly
those related to the eigenvalue problems, have drawn much atten-
tion for the last few decades. In general, methods for calculating
the design sensitivity of structures could be divided into
semi-analytic methods, direct sensitivity method [2,6] and adjoint
variables methods [7,8]. The design sensitivity of eigenvalues and
eigenvectors of undamped structures and systems is considered
in many papers (see, for example [1,9]). Methods for the sensitivity
analysis of systems or structures with proportional and/or nonpro-
portional damping are presented in [6,10–13]. Both systems with
distinct and repeated eigenvalues are considered in [9–11]. The

sensitivity analysis for general nonlinear eigenproblem is consid-
ered in [12]. The methods of design sensitivity analysis could also
be divided into two groups: (i) the algebraic method applied in
determination of sensitivities of eigenvalues, eigenvectors and
the frequency response function (FRF) and (ii) the modal approach
applied mainly to determine sensitivities of eigenvectors and fre-
quency response functions. The first-group methods are presented
in [2,6,8–13] while the modal approach is described in [13,14].
Design sensitivity analysis of the frequency response functions is
considered by Choi and Lee [15], and in the papers by Ting [16]
and by Qu and Selvam [17]. The above-mentioned studies consider
only viscously damped structures or systems.

The sensitivity analysis of eigenvalues and eigenvectors of non-
viscously damped systems was presented by Adhikari [14,18],
Adhikari and Friswell [19], and Li et al. [11,12,20]. The sensitivity
analysis of dynamic response of nonviscously damped systems is
considered by Li et al. [13], who described damping forces by
means of the convolution integral resulting from the Boltzmann’s
superposition principle. The sensitivity analysis of systems with
damping, described with the help of fractional derivatives is pre-
sented by Kobelev [21]. The method described in [13], in principle,
could also be used to determine the parametric sensitivity of non-
viscously damped systems when the fractional derivatives are used
to describe damping forces. However, the results of sensitivity
analysis of structures with fractional dampers are not presented.
In the context of dynamics of viscoelastic structures, eigensensitiv-
ity analysis is presented in [22,23], where the concept of complex
modulus is used to describe the viscoelastic properties of surface
damping layers. Additionally, in [23] the sensitivity of frequency
response functions with respect to changes of temperature is
considered.
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The systematic design sensitivity analysis of structures with
viscoelastic (VE) dampers which is referred to in this work has
never been published before. In this paper, the direct differentia-
tion method for the design sensitivity analysis of structure with
VE dampers is discussed. The systematic approach for the sensitiv-
ity analysis of dynamic characteristic of structures with dampers is
described. These include the sensitivity of natural frequencies,
non-dimensional damping ratios, sensitivities of eigenvalues and
eigenvectors. Both the direct approach and the adjoint approach
are presented. The dampers are modeled using both the classical
rheological model and the rheological model with fractional
derivatives.

The paper is organized as follows. In Section 2, the considered
models of damper and the equation of motion of structure with
dampers are presented. Then, in Section 3, the method to calculate
the dynamic characteristics of systems is briefly described. Next, in
Section 4, the design sensitivity analysis is shown. In Section 5, the
results of exemplary calculations are provided and correctness of
the method used is discussed. Finally, in Section 6, concluding
remarks are formulated. Several useful formulae are given in the
Appendices.

2. Model of VE dampers and equation of motion of structures
with VE dampers

2.1. Models of VE dampers

It is well-known that the properties of VE materials which are
used to build VE dampers depend on many parameters such as:
frequency of excitation, temperature, and amplitudes of vibration
[24]. The influence of the amplitudes of vibration is neglected in
the case of small amplitudes. Moreover, the effect of temperature
is, usually, also skipped and finally only the influence of excitation
frequency is taken into account.

Several models are used to describe the dynamic behavior of VE
materials and VE damper. In general, these can be divided into
three groups, i.e., rheological (mechanical) models, phenomenolog-
ical models, and other ones. Mainly, the rheological models, both
the classical one [25–31] and the fractional derivative model
[32–38] are considered.

In description of structure with VE materials in time domain
three models are relatively widely used: Golla–Hughes–McTavish
model (GHM) considered in [48,49], augmenting thermodynamic
fields model (ATF) considered in [50] and anelastic displacement
fields model (ADF) considered in [51]. These models are applied
when internal variables approach are taken into consideration
but to description of VE dampers have not been used.

In this paper, only the classical rheological models and ones
described with the help of fractional derivatives are taken into
account.

The diagram of the considered classical model is shown in Fig. 1
while in Fig. 2, diagram of fractional model is presented.

In the case of the fractional model of damper, the dashpot is
replaced by a viscoelastic element (called also the Scott-Blair ele-
ment) described by two parameters (in Fig. 2 shown as a rhombus),
the constant c and a number a ð0 < a 6 1Þ.

The constitutive equation for the Scott-Blair element is:

uðtÞ ¼ c Da
t DqðtÞ; ð1Þ

where the symbol Da
t ð�Þ denotes the fractional-derivative of the

order a with respect to the time t. Mainly the Riemann–Liouville
definition of fractional derivative is used in the description of VE
dampers and in rheology [28,32–40]. However, recently Di Paola
et al. [41,42] have shown that, in the context of rheology, it is more
logical to use the Caputo type definition of fractional derivative.

Moreover, it is known (see [43]) that for a system at rest at t ¼ 0
or for systems that operate from t ¼ �1, the Caputo fractional
derivative is equivalent with the Riemann–Liouville derivative. In
conclusion, when the above assumptions are fulfilled, the operator
Da

t ð�Þ could be understood in two ways: as the Riemann–Liouville
derivative or as the Caputo derivative.

The fractional model of damper that is adopted in this paper is
shown in Fig. 2. It consists of the fractional Kelvin element which is
connected in parallel with the fractional Maxwell element. The
total force uðtÞ in this model is the sum of forces that occur in
the Kelvin element:

u0ðtÞ ¼ k0DqðtÞ þ c0D
a
t DqðtÞ; ð2Þ

and the force which acts in the fractional Maxwell element and is
governed by the equation:

m1u1ðtÞ þ Da
t u1ðtÞ ¼ k1D

a
t DqðtÞ; ð3Þ

where m1 ¼ k1=c1; DqðtÞ ¼ qkðtÞ � qjðtÞ is the relative displacement
of damper.

Applying the Laplace transform with zero initial conditions, to
equations of motion (2) and (3) the following Laplace transform
of total force uðsÞ is obtained:

uðsÞ ¼ k0 þ sac0 þ k1sa

m1 þ sa

� �
DqðsÞ ¼ GðsÞDqðsÞ; ð4Þ

where such quantities as uðsÞ and DqðsÞ denote the Laplace trans-
forms of uðtÞ and DqðtÞ, respectively, and s is the Laplace variable.

The fractional models of damper described above can be treated
as general ones. A set of specific models arise from them: the sim-
ple fractional Maxwell (when k0 ¼ c0 ¼ 0), the fractional Kelvin
model (when k1 ¼ m1 ¼ 0) and the fractional Zener model (when
c0 ¼ 0). This means that almost all fractional models known from
literature up to now are taken into account by the above fractional
model.

The generalized classic Maxwell model of damper is built of a
dashpot with the constant c0, connected in parallel with a spring
of the stiffness k0 and, in addition to them, a number of two-
parameter Maxwell elements which are connected in parallel.

The Maxwell elements are characterized by the stiffness and
damping parameters kl and cl (l ¼ 1;2; . . . ;m). Moreover, the part
of the model that is associated with the constants c0; k0 constitutes

Fig. 1. The diagram of the generalized classic Maxwell model of damper.
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