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a b s t r a c t

During the recent decade, truss optimization by meta-heuristics has gradually replaced deterministic and
optimality criteria-based methods. While they may provide some advantages regarding their robustness
and ability to avoid local minima, the required evaluation budget grows fast when the number of design
variables is increased. This practically limits the size of the problems to which they can be applied.
Furthermore, many recent stochastic optimization methods handle the size optimization only, the poten-
tial saving from which is highly limited, when compared to the most sophisticated, and obviously the
most challenging scenario, simultaneous topology, shape and size (TSS) optimization. In a recent study
by the authors, a method based on combination of optimality criteria and evolution strategies, called fully
stressed design based on evolution strategies (FSD-ES), was proposed for TSS optimization of truss struc-
tures. FSD-ES outperformed available truss optimizers in the literature, both in efficiency and robustness.
The contribution of this study is twofold. First, an improved version of FSD-ES method, called FSD-ES-II, is
proposed. In comparison with the earlier version, it takes the displacement constraints in the resizing
step into account and can handle constraints governed by practically used specifications. Update of strat-
egy parameters is also revised following contemporary and new developments in evolution strategies.
Second, a test suite involving a number of complicated TSS optimization problems is chosen to overcome
usual shortcomings in the available benchmark problems. For each problem, performance of FSD-ES-II is
compared with the best results available in the literature, often showing a significant superiority of the
proposed approach.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Truss design optimization can be considered from three distinct
perspectives. Topology optimization determines the optimum con-
nection plot of members. Shape optimization optimize coordinates
of the nodes for a known topology and size optimization finds the
optimum cross sections of the members. The optimized structure
should satisfy some constraints on member stress, node displace-
ment, slenderness ratio or even natural frequency.

The methods commonly used for truss optimization are based
on optimality criteria or mathematical programing [1,2]. The
former assumes that the optimal design should satisfy some a
priori conditions [3,4]. The concept of fully stressed design (FSD)

is the most common approach in this group, which assumes in
the optimally sized structure, all members reach the stress limit
at least in one of the load cases [3]. Accordingly, all members are
iteratively resized to reach this goal, assuming that the force
distribution does not change when members are resized. These
assumptions are not always valid. First, the global minimum in
not necessarily a fully stressed design [4,2]. Second, member forces
change as soon as their section area is modified, except in
determinate structures, in which FSD can potentially converge in
one iteration. Nevertheless, when the number of redundant mem-
bers is small, the error prompted by these assumptions is usually
small, and iterative resizing, at least when the resizing step is con-
trolled [3], can reach a high quality design. The required number of
design evaluations is almost independent of the number of mem-
bers [3], and the method usually reaches a good solution after a
few iterations [3]. Later, the concept of FSD was extended to handle
problems with multiple load cases, displacement constraints, or
when more sophisticated failure criteria are governed by design
specifications [1].
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For these reasons, FSD used to be preferred over mathematical
programming, when the computation resources were limited [3],
except for highly indeterminate structures, where FSD risks diver-
gence [3]. However, it does not take the objective function into
account and thus, use of more sophisticated objective functions
that consider other factors in the overall cost, is not directly
applicable. When there are multiple displacement constraints,
FSD leads to a resizing problem which is not easy to solve
analytically.

Unlike optimality criteria, mathematical programming meth-
ods are robust tools to solve general optimization problems [3].
With recent development in computation tools and parallel
computing, the challenge of costly evaluations has been moder-
ated to great extent. At the same time, stochastic optimization
techniques such as evolutionary algorithms (EAs) and swarm-
based methods were developed and demonstrated some advan-
tages over deterministic approaches, especially in multimodal
problems. There has been a large number of studies on truss opti-
mization with stochastic methods in the recent decade. Many of
them, however, consider the simplest scenario, size optimization.
The number of recent publications on size optimization with
stochastic methods is relatively huge, too many to cite. Some
examples of size optimization methods and a review of
meta-heuristics applied to truss optimization can be found in
previous publications [5–8].

More sophisticated schemes consider shape or topology opti-
mization as well [9–11,8]. Topology optimization is particularly a
challenging task, since even a small variation in topology can result
in significant change in member forces and besides, many kine-
matically unstable structures might be produced during the search.
The most sophisticated scheme, and potentially the most effective
one [2], performs topology, shape and size (TSS) optimization at
the same time. Nevertheless, studies on TSS optimization are
comparatively scarce, possibly because of the complexity of the
problem nature which demands sophisticated specialization of
meta-heuristics. Several strategies to circumvent this complexity,
in the case of TSS optimization, were proposed in the literature,
however, they usually reduces potential for better solutions [12].
Moreover, the size of the test problems employed to validate the
algorithms is usually small or moderate at best [13–18]. A few
studies tried fairly large problems as well [19,20,12], but a compar-
ison with other methods was not provided.

In a recent method, called fully stressed design based evolution
strategy (FSD-ES) [11,12], the concept of FSD was employed to
resize the designs produced by an evolution strategy. In compar-
ison with earlier stochastic optimization methods, FSD-ES could
reach lighter structures in smaller number of function evaluations.
The resizing step helps the method find near optimally sized struc-
ture for a given shape or topology defined by the evolution
strategy.

This study aims at overcoming some general drawbacks in
stochastic TSS truss optimization by improving the earlier version
of FSD-ES. The contributions of this study to truss optimization
field are as follows:

– An improved version of the resizing technique is proposed,
which can take displacement constraints into account. We also
propose an optimality criteria-based heuristic to solve the resiz-
ing problem.

– The employed evolution strategy is revised and the traditional
mutative self-adaptation concept is replaced by a strategy
based on contemporary evolution strategies.

– A revision to the fitness function is provided to compare
kinematically unstable structures as well. The problem of
under-estimated number of evaluations in the earlier version
is revised.

– Emphasis is put on complicated TSS problems, with up to 308
design parameters. Some of the test problems are proposed in
this study, by converting a simpler problem to a complicated
TSS problem.

In the next section, previous studies on two main components
of FSD-ES are briefly reviewed. The improved method, called
FSD-ES-II, is explained in Section 3. A test suite consisting of com-
plicated TSS truss optimization problems is formed in Section 4
and results from FSD-ES-II are compared to the best available
results in the literature in Section 5.

2. Main components

FSD-ES utilized two underlying concepts: The ES part performs
the stochastic global search in the whole search space while the
FSD part optimize the size variables of the solution provided by
the ES. By using FSD, problem specific knowledge is incorporated
to the algorithm. These two parts are briefly discussed in this
section.

2.1. Fully Stressed Design (FSD)

In general, the truss optimization problem can be formulated as
follows:

Minimize weight hð Þ ¼ q
XNm

i¼1
AiLi

subject to

ukl 6 uall; k ¼ 1;2; . . . ;DNn; l ¼ 1;2; . . . ;Nl;

rilj j 6 rall; i ¼ 1;2; . . . ;Nm; l ¼ 1;2; . . . ;Nl;

Ai 2 A; i ¼ 1;2; . . . ;Nm;

ð1Þ

where h determines a design. Nm;Nn and Nl are the number of mem-
bers, nodes and load cases respectively. D = 2 for planar and D = 3
for spatial trusses. ril is the stress in the i-th member and ukl is
the displacement of the k-th degree of the truss under the l-th load
case, respectively. uall and rall denotes the allowable limit for node
displacement and member stress, respectively, which are known or
can be computed. Ai and Li are the cross-section area and the length
of the i-th member, respectively. q is the density of the truss mate-
rial and A is the given set of available sections.

FSD is based on iterative resizing of the member cross section
areas to minimize the truss weight such that all constraints are sat-
isfied. No change on the topology or shape is made and thus, the
only design parameters are member sections, A. The force distribu-
tion is assumed to be independent of the member cross section
areas. For this case, the effect of each member on displacement
can be computed using the unit load method:

ukl Að Þ ¼
Xm
i¼1

cikl
Ai

�����
�����; cikl ¼ f ikFilLi

E
ð2Þ

In Eq. (2), f ik is the axial force in the i-th member when a unit load is
applied to the k-th degree of freedom of the truss. Fil is the axial
force in the i-th member under the l-th load case and E denotes
the modulus of elasticity of the truss material. According to Eq.
(2), each displacement constraint depends on many or even all sec-
tions, therefore, solving the resizing problem, in general, is not easy.
In a study [3], a two-step approach was employed such that in the
first step, member sections are increased or decreased so that all
stress constraints are satisfied and activated. In the second step, sat-
isfaction of displacement constraints is pursued, while, no reduction
in the cross section areas is allowed.
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