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a b s t r a c t

The theory proposed in the paper provides a new approach for the modelling of multiple material
discontinuities. The scope of this work is restricted to numerical methods and in particular an approach
that utilises the benefits of traditional continuous finite element approximations but enhanced with an
increased capacity for handling material discontinuities. The approach is founded on transport forms
of the governing conservation laws describing discontinuous physics by means of bespoke moving
control volumes and the non-physical field concept. The theory is demonstrated through its application
to steady-state and transient flyer impact-plate problems for which analytical results are available.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The concept of the non-physical method for the modelling of
multiple material discontinuities in solidification was introduced
in reference [1] for dealing with a strong discontinuity in enthalpy
and a weak discontinuity in temperature. The method proposed
here is a further investigation for modelling of the general
discontinuous problems rather than being limited to solidification
phenomena [1,2]. The work also extends previous work [3] limited
to themodelling of general singlematerial discontinuities using the
non-physical finite element method (NPFEM). The founding idea
underpinning the NPFEM is the ability to define non-physical vari-
ables via moving control-volume transport equations along with
their representation using traditional approximations common to
the finite element method (FEM). A feature of the non-physical
approach is that it provides an exact description of the underpin-
ning physics describable by transport equations. Any discontinuous
behaviour in a physical field variable is represented exactly by a
continuous non-physical field on which a non-physical source is
superimposed at a discontinuity. Expressing the governing
equations in the integral transport equation form facilitates the
use of multiple control volumes. To describe discontinuities in the
NPFEM involves enclosing each discontinuity in a moving control
volume (CV), which are themselves moving in another moving
CV. Collapsing a moving CV at a discontinuity reveals the source-
like behaviour in the non-physical field. This limiting process
provides a strong description of the behaviour at a discontinuity
and new insight into this aspect is provided in this paper.

The definition of non-physical variables via transport equations
is ideal for the precise isolation of material discontinuities and
hence their description. The ability to focus and collapse a control
volume at any point of a discontinuity means that complex geo-
metrical branched discontinuities can in principle be represented.
A complex discontinuous physical field is describable by a contin-
uous non-physical field with a source-like behaviour superim-
posed at discontinuities. A Galerkin weighted-transport method
is applied to arrive at a weak form of the weighted transport equa-
tions (TEs). Due to the fact that non-physical fields are essentially
continuous (with limiting continuity at a physical discontinuity)
traditional continuous Galerkin shape functions can be employed.
The NPFEM replaces any governing conservation equation for a
physical field w, by an equivalent governing equations written in

terms of its associated non-physical counterpart w
_

. This substitu-
tion facilitates the solving of discontinuous problem in the frame-
work of the traditional Galerkin finite element method (GFEM).
Shown in Fig. 1 is a 1-D schematic of a discretisation of a non-
physical variable using continuous shape functions. Here w is the

discontinuous physical field, w
_

is the non-physical variable, whilst

w
_0 is the non-physical source and w

_

h represents the approximation

of w
_

using linear shape functions.
On first inspection the NPFEM may appear similar to the

extended finite element method (XFEM) and the discontinuous
Galerkin finite element method (DGFEM) which are the two main
FE-based shock capturing techniques. However, the XFEM for
example enriches the classical Galerkin shape functions and conse-
quently extends the Sobolev space of the traditional GFEM [4]. This
extension can result in singularity and instability particularly for
high-rate discontinuous phenomena [5,6]. In addition, the DGFEM
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violates the space of the classical GFEM and works on a space ter-
med the broken (semi) Sobolev space [7]. It permits the introduc-
tion of discontinuities at the element edges and thus provides a
weak continuity between field variables, which can be problematic
for solution stability [8,9]. The singularity and instability issues
that arise in XFEM and DGFEM can intensify for high-rate multiple
discontinuities. In contrast to the XFEM and DGFEM, the NPFEM
relies completely on the framework of the traditional GFEM and
consequently can readily cater for high-rate multiple material
discontinuities. The full details of the review and theoretical
comparison between NPFEM, XFEM and DGFEM can be found in
reference [3].

Another recently developed competitor to the XFEM is the
numerical manifold method (NMM) [10,11]. The NMM is a promis-
ing method for modelling material and geometrical discontinuities
and can be categorised as a continuum–discontinuum numerical
technique [12,13]. The NMM employs a dual cover system (math-
ematical and physical) with the mathematical cover independent
of any discontinuities present. This feature enables the NMM to
model any kind of weak/strong discontinuities without recourse
to adaptive or re-meshing [11]. The physical cover is obtained by
intersecting the mathematical cover with physical boundaries
and discontinuities [12,14]. Degrees of freedom are attached to
the physical cover and consequently the global approximation of
a field is not based on nodal-weighted averages [14,15]. This aspect
can result in rank dependency/deficiency issues in the case of local
linear approximations [13,15]. A particular concern with the NMM
is the construction of elements on a physical cover, which can
involve irregular and complex geometries [12]. Moreover, the
method requires an extra cover refinement algorithm near a crack
tip [11] along with special treatment for the jump conditions at
material interfaces [19]. Some of these issues have been addressed
and improved upon in the recently published literature
[10,11,14,15]. The approach, when contrasted with the XFEM, is
reported to be a more robust discontinuity-capturing, numerical
technique. The XFEM is known to suffer from issues with
ill-conditioning of the cut-element stiffness matrices [14] and
due to its cover-based property the NMM can naturally handle
multiple, branched and intersected discontinuities, where usually
the XFEM fails [16].

In contrast with the NMM, the proposed NPFEM does not
involve dual meshes and is founded firmly on the classical FEM,
a feat achieved by ensuring that only continuous fields are approx-
imated. This in effect increases the capability of classical FE-based
numerical algorithms for modelling material discontinuities and
has the potential to be directly incorporated into commercial soft-
ware. It also has the potential for incorporation into a mesh-free
formulation although this consideration is not the focus of the
present work. The single discontinuity version of the NPFEM has
been tested for the high-rate crushing of cellular materials and
the results are presented in reference [17].

In this paper, a formulation of the NPFEM is presented which

permits the removal of the non-physical source w
_0 from the gov-

erning weighted transport equations yet sufficiently represent
the underlying physics at a discontinuity. The NPFEM for multiple
material discontinuities is tested on steady-state and transient
case studies and excellent results are obtained.

The outline of the paper is as follows. In Section 2 the
preliminary concepts of the integral form of transport conservation
equations in an arbitrary Lagrangian Eulerian framework are given.
The non-physical variables and their equivalent conservation
governing equations are also introduced. The behaviour of the
non-physical field at the place of discontinuity is presented along
with the non-physical equivalent equations, which are developed
for multiple discontinuities. The annihilation of multiple

discontinuities from the NPFEM formulations is proved mathemat-
ically in Section 2.4. In Section 3, the finalised form of the FE for-
mulation for the non-physical equivalent transport equations is
presented. These equations are shown to be absent of the multiple
discontinuities that are present in the original formulation. In Sec-
tion 4, the robustness and performance of the NPFEM is illustrated
though three cases studies. And finally, Section 5 concludes with
important concluding remarks.

2. Theoretical background

In this paper, integral forms of the transport equations are
employed to represent the governing conservation laws. The use
of integral forms in comparison with the differential equations per-
mits the direct incorporation of discontinuous physical fields. This
feature arises from the fact that integration increases the degree of
smoothness and can cope with discontinuous functions whilst
classical differentiation cannot. Therefore, integral transport equa-
tions are the more generic form of representation of the conserva-
tion equations since they can be reduced to the differential form,
should this exist.

2.1. Weighted conservation transport equations

The formulation proposed here can in some sense be considered
as a generalised form of the arbitrary Lagrangian–Eulerian (ALE)
formulation. This formulation permits independent control volume
(CV) movement in a computational reference system (CRS). The
Material reference system (MRS), spatial and CRS co-ordinates
are denoted by X, x, and v, respectively. An important velocity is
v� ¼ D�x=D�t ¼ @x v; tð Þ=@t, which serves to transport the computa-
tional control volume to which any mesh is attached. Its formal
definition involves a reference coordinate system (fixed CV) with
coordinate v. Apart from this definition the reference system is
to play little part in this paper as all analysis is preformed on the
moving CV. The definition of the derivative D�=D�t is similar in
form to that for the well-established material derivative
v ¼ Dx=Dt ¼ @x X; tð Þ=@t, where X belongs to the material reference
system. The use of the derivative D�=D�t, when applied to an inte-
gral of the form

R
X qwdV , is intended to immediately relay thatX is

a control volume transported with velocity v�.
One of the deficiencies of v� is that it does not generally match

the normal velocity of any discontinuity passing through the
domain X. This failing necessitates the definition of an additional
velocity vþ, which by design does so but in addition matches the
normal velocity of v� on C the boundary for X. A conservation
law for a moving domain X defined by the diffeomorphism
x v; tð Þ is

ψ

hψ̂
ψ̂

ψ ′ˆ

Discontinuity

Fig. 1. Schematic 1-D modelling of a discontinuous function in the NPFEM.
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