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a b s t r a c t

An approach is proposed to estimate the collapse load of linear elastic isotropic no-tension 2D solids. The
material is replaced by a suitable equivalent orthotropic material with spatially varying local properties.
A non-incremental energy-based algorithm is implemented to define the distribution and the orientation
of the equivalent material, minimizing the potential energy so as to achieve a compression-only state of
stress. The algorithm is embedded within a numerical procedure that evaluates the collapse mechanisms
of structural elements under monotonic loading. The accuracy of the method is assessed through compar-
isons with the ‘‘exact’’ results predicted by limit analysis.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The safety assessment of the architectural heritage is nowadays
an issue of paramount importance, both because of the need of
avoiding to put human lives at risk, and because of the economic
impact of this priceless heritage, for instance, on tourism industry.

In most countries, the architectural heritage consists of
masonry buildings. Masonry, whether of stone or brick, is well
known to be a material with low tensile strength. The inability of
transferring significant tensile stresses is the reason for the exten-
sive crack patterns that can be observed in many ancient buildings.
The presence of cracks is not necessarily symptomatic of a possible
collapse, as stresses can spontaneously attain a purely compressive
state, which makes cracked regions unnecessary to the stability of
the building.

Many formulations have been proposed in the last decades to
analyze masonry structures, at different degrees of accuracy.
Inelastic constitutive models, taking plastic strains and/or damage
effects into account, were presented e.g. in [16,19,22], only to
quote a few.

Several authors have proposed to analyze masonry structures
using no-tension material models: this is why no-tension materials
are sometimes referred to as ‘‘masonry-like’’ materials in the liter-
ature [2,10,13]. Neglecting the low tensile strength of masonry
completely is a simplification that is far from being original: in
the sixties of last century, Heyman [15] proposed to specialize limit

analysis to masonry structures assuming the compressive strength
to be unlimited and the tensile strength to vanish. This schemati-
zation is spontaneous for stone masonry, consisting of blocks sep-
arated by weak joints, but was adopted by other authors also for
brick masonry [2,4,5].

Recently, Angelillo et al. [2] proposed an approach to analyze
two-dimensional no-tension bodies subjected to given loads based
on the unconstrained minimization of the potential energy with
respect to the unknown displacement field. The numerical difficul-
ties related to the enforcement of the no-tension constraint [10]
are avoided by giving the strain energy density of the material dif-
ferent expressions, according to the sign of the principal stresses.

This idea was later exploited by Bruggi [9] to re-formulate the
analysis of no-tension solids as a topology optimization problem.
The equilibrium of a two-dimensional no-tension body is found
searching for the distribution of an ‘‘equivalent’’ orthotropic mate-
rial that minimizes the potential energy of the solid. The orthotro-
pic material exhibits negligible stiffness in any direction along
which a tensile principal stress must be prevented in the isotropic
medium. Similarly to [2], this approach obtains the solution under
given loads through a one-shot energy-based optimization, pro-
vided that the applied loads are compatible with the no-tension
constraint.

In this work, an approach is presented to predict the carrying
capacity of no-tension 2D structural elements, starting from that
proposed in [9]. A numerical scheme is formulated to estimate
the collapse load (and the relevant failure mechanism) of
no-tension structures with a number of load steps much lower
than that required by conventional incremental analyses.
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The layout of the paper is as follows. In Section 2 the mathemat-
ical problem that allows the no-tension isotropic solid to be ana-
lyzed as an equivalent orthotropic medium is briefly recalled.
The distribution and the orientation of the orthotropic material
are determined by minimizing the elastic strain energy of the solid.
In Section 3, the model is implemented in an algorithm that allows
the stress analysis of any 2D no-tension body to be directly carried
out without the need of any incremental procedure (Section 3.1).
Upon discretization of the problem, the constrained minimization
of the objective function is carried out through mathematical pro-
gramming [23]. If required, the entire load–displacement curve
under monotonic loading can be derived at any degree of accuracy
by running a sequence of independent analyses. A few comments
on the proposed algorithm and comparisons with alternative opti-
mization tools available in the literature are made in Section 3.2.
The possibility of estimating the collapse load of the structure
using an expressly developed algorithm is shown in Section 3.3.
The effectiveness of the model in predicting the collapse load of
various no-tension structures is assessed in Section 4. A prelimi-
nary discussion is made on the accuracy of the results obtained
checking the no-tension condition only at the centroid of any finite
element, or at each of the Gauss points of the element.
Comparisons between the numerically estimated collapse loads
and the values obtained using limit analysis specialized to
no-tension materials are also presented. Finally, in Section 5 the
main findings of the work are summarized and future extensions
of the research are outlined.

2. Problem formulation

According to Bruggi [9], the equilibrium of any 2D isotropic lin-
ear elastic no-tension solid can be stated in weak form as follows:

min
q1 ;q2

1
2

R
X Dðq1;q2; hÞeðuÞeðuÞdX

s:t:
R

X Dðq1;q2; hÞeðuÞeðvÞdX ¼
R

Ct
t0 � vdC and ujCu

¼ u0 8v;
h j ez1 ¼ zI and ez2 ¼ zII;

q1;q2 j rI � 0 and rII � 0;
0 < qmin 6 q1;q2 6 1:

8>>>>>>><>>>>>>>:
ð1Þ

In Eq. (1), X is the domain occupied by the solid, Ct is its free
boundary and Cu its fixed boundary. t0 are prescribed tractions on
Ct and u0 are prescribed displacements on Cu; body forces are
neglected. u is the displacement field and e ¼ ½e11 e22 2e12� is the
array of the strain components in a global Cartesian reference sys-
tem Oz1z2. The real isotropic no-tension material is replaced by an
equivalent orthotropic material, with symmetry axes ez1 and ez2,
coinciding with the principal stress directions, zI and zII , at any point
of the real solid. h is the angle between zI and z1. Indeed, from the
optimal design of anisotropic elastic solids (see e.g. [18,20,21]), it
is well known that the symmetry axes characterizing a maximum
(or a minimum) stiffness layout are aligned to the principal stress
directions. Unlike the approach followed in [9], where this align-
ment was iteratively enforced within the solution procedure, here
the orientation field hðz1; z2Þ is added to the unknown variables,
and the expected alignment of symmetry axes and principal stress
directions spontaneously arises from the minimization procedure.

The stress–strain law for the equivalent material is written as
r ¼ De, where r ¼ ½r11 r22 r12� and D can be expressed as

D ¼ TðhÞeDTðhÞT ; ð2Þ

being eD the elasticity matrix in the reference system Oez1ez2 and T a
transformation matrix, depending on the orientation hðz1; z2Þ.
Assuming plane stress conditions, eD reads

eD ¼ 1
1� em12em21

eE1 em12
eE2 0em21

eE1
eE2 0

0 0 eG12ð1� em12em21Þ

264
375; ð3Þ

where eE1; eE2 are the Young’s moduli of the equivalent material

along ez1 and ez2, respectively, eG12 is the in-plane shear modulus

and em12; em21 are Poisson’s ratios. The equality em12
eE2 ¼ em21

eE1 holds.
T can be written as

T ¼
cos2 h sin2 h �2 cos h sin h

sin2 h cos2 h 2 cos h sin h

cos h sin h � cos h sin h cos2 h� sin2 h

264
375: ð4Þ

The nondimensional ‘‘material densities’’ q1 and q2 (2 ð0;1�)
define the decrease of the elastic properties of the equivalent
material with respect to those of the real material along ez1 andez2 if one or both principal stresses are tensile, according to a gen-
eralization of the so-called SIMP material model (see e.g. [6,7]):

eE1 ¼ qp
1E; eE2 ¼ qp

2E; eG12 ¼ qp
1q

p
2

E
2ð1þ mÞ ;em12 ¼ qp

2m; em21 ¼ qp
1m: ð5Þ

In Eq. (5), E and m are the Young’s modulus and the Poisson’s ratio of
the real isotropic material, respectively, and p is a penalization
parameter (usually taken equal to 3). The normalized densities
are given a strictly positive lower bound, qmin, to avoid any singular-
ity in the stiffness matrix of the body, K, when a finite element dis-
cretization is adopted.

3. Finite element analysis of no-tension structures

3.1. Direct analysis for any prescribed compatible load

The discretized form of the minimization problem (1) is imple-
mented into a finite element program through a procedure called
SOLVE, which allows the analysis of a linear elastic no-tension struc-
ture to be directly carried out for any prescribed load compatible
with the mechanical behavior of the material.

Algorithm 1.

1: procedure SOLVE

2: j ¼ 0; wð0Þ ¼ 0; Dw ¼ 1
3: Initialize variables: x1e ¼ x2e ¼ 0:5; te ¼ p=2; 8e
4: while Dw > Dwtol do
5: j ¼ jþ 1
6: Solve Kðx1;x2; tÞU ¼ F
7: Compute wðjÞ ¼ 1

2 UT Kðx1;x2; tÞU
8: Evaluate Dw ¼ jwðjÞ � wðj� 1Þj
9: Assign bxie, for i ¼ 1;2, such that:

10:
bxie ¼ xie; if re;i � 0;bxie ¼ kxie; otherwise:

�
11: Compute bw ¼ 1

2 UT Kðbx1; bx2; tÞU
12: Compute reduced sensitivities @bw
13:

@bw
@xie
¼ 1

2 UT
e

@
@xie

Keðbx1e; bx2e; teÞUe; for i ¼ 1;2
@bw
@te
¼ 1

2 UT
e

@
@te

Keðbx1e; bx2e; teÞUe

8<:
14: Run MMA(bw; @bw) to update x1e; x2e; te

15: end while
16: Solve Kðx1;x2; tÞU ¼ F
17: end procedure

M. Bruggi, A. Taliercio / Computers and Structures 159 (2015) 14–25 15



Download English Version:

https://daneshyari.com/en/article/6924387

Download Persian Version:

https://daneshyari.com/article/6924387

Daneshyari.com

https://daneshyari.com/en/article/6924387
https://daneshyari.com/article/6924387
https://daneshyari.com

