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a b s t r a c t

The back analysis or inverse analysis of the field instrumentation data is a common technique to ascertain
the design parameter validity in deep excavation projects. That analysis is a process full of uncertainties
and relies greatly on the expert judgement. Furthermore, deep excavation geotechnical models tend to be
computationally very expensive making the inverse analysis a very lengthy process. In this paper, a
Bayesian-type methodology to solve inverse problems which relies on the reduction of the numerical cost
of the forward simulation through stochastic spectral surrogate models is presented. The proposed
methodology is validated with three calibration examples.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Soil is a highly non-linear material whose strength and stiffness
depends on stress and strain levels. Numerous constitutive models
have been developed to simulate the most important features of
soil behaviour [1–3] although there is no agreement on which is
the best to model a particular type of soil. The choice of the model
rests on the available soil information and the particular design sit-
uation. In addition, determination of soil parameters is a difficult
task due mainly to the ground heterogeneity, the boundary condi-
tions uncertainty (water table position, layering, . . .), the distur-
bance suffered by soil specimens during geotechnical sampling
and the small quantity of soil surveyed compared to the mass of
ground affected by any foundation. Hence, the bulk information
yielded by the field surveying and laboratory testing program must
be interpreted by an experienced engineer, adding more uncer-
tainty to the choice of the constitutive model and its parameters
[4]. In order to ascertain the parameter validity, it is common in
geotechnical engineering to perform back analysis or inverse anal-
ysis procedures from field instrumentation. The field observations
might not be as precise as desired due to the hard site conditions.
Hence, to solve a geotechnical inverse problem means to estimate
partially known parameters from indirect noisy observations. This
is not an academic issue since it has practical applications, for

instance, the information recorded during the early stages of the
construction might be used to update and validate the initial
design predictions. The back analysis is a tool which enables to
gain insight and to understand better the soil-structure system
behaviour [5].

Inverse problem resolution is not new since numerous authors
have studied it previously [6–16]. Many of those studies [6,8–
11,14] address the back analysis as an optimization problem (i.e.
obtaining the set of parameters which minimize an objective func-
tion). That approach leads to estimated parameters which reliabil-
ity is generally unknown [15]. As the model might not be able to
reproduce perfectly the actual response and the observations might
suffer measurement errors, the solution should take into account
the model and observations uncertainties. For that reason, the
Bayesian approach is the appropriate methodology to solve inverse
problems [17,18]. In geotechnical engineering, the solution of sta-
tistical inverse problems can be a computationally intensive task.
The numerical burden arises mainly in two ways [19]: (i) the large
number of parameters that the model might require and (ii) the
computational cost that might require a single realization to run.

The main objective of this paper is to present a Bayesian
methodology to determine at low numerical expense the model
parameters from the observed response at one construction stage
of a deep excavation. To that end, the Bayesian methodology is
briefly outlined in the first part of this paper. The Bayesian methods
regard the model parameters as random variables which are
updated once a set of observations is known. As the solution of
the problem is posed in terms of random variables, the stochastic
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spectral representation can be used to reduce the numerical burden
[20,21]. The random variable spectral representation is the back-
bone of the non-intrusive stochastic finite element methods
(SFEM) [22,23] and hence those methods are briefly described.
Once the theoretical framework has been established, the proposed
methodology to solve inverse problems is adequately presented.
The spectral approach raises two benefits (i) the substantial reduc-
tion of computational cost when performing the optimization cal-
culations on the surrogate model constructed by means of SFEM
and (ii) the possibility of an analytical computation of the statistical
relationship between the different observations (i.e. the covariance
matrix). However, the surrogation brings a modelling error affect-
ing the solution. One of the main findings of this paper is the algo-
rithm developed to estimate the surrogation error at low numerical
expense. Finally, the proposed methodology is validated by the
study of three calibration problems of increasing complexity.

2. Inverse problem solution

The connection between the parameters m and the observa-
tions d defines the following deterministic forward or response
model gðmÞ, namely:

m! d ¼ gðmÞ: ð1Þ

The predicted values cannot be identical in general to the
observed values due to observational and modelling errors. The
goal of the inverse problem is to infer the N model parameters m
from a set of n imperfect observations d. In the Bayesian approach,
m and d are vectors of random variables. qdðdÞ is the probability
density function (pdf) of the observations and qmðmÞ encodes
any available prior knowledge about the inputs. The key point of
Bayesian inference is the way that the a priori distribution qmðmÞ
is updated to the a posteriori distribution rmðmÞ once a set of
observations dobs is known.

The difference between the observed values dobs and the actual
response d is the observational error. The vector of n residuals eD is
regarded in this paper Gaussian of zero mean:

eD ¼ d� dobs � Nð0;CDÞ; ð2Þ

where the covariance matrix CD measures the size of those residuals
and gives the dependence between them. The a priori observation
distribution can be written as [24]:

qdðdÞ / exp �1
2
ðd� dobsÞT C�1

D ðd� dobsÞ
� �

; ð3Þ

As m and d are regarded independent random variables, the
joint pdf is given by (see Fig. 1a):

qðd;mÞ ¼ qdðdÞqmðmÞ ð4Þ

If the forward model gðmÞ were perfect (i.e. modelling errors
free), each parameter vector would yield only one observation vec-
tor. Nevertheless, most often, the underlying physical theory lacks
of some fundamental knowledge or fails to achieve a perfect
parametrization [17]. Therefore, the joint probability density
Hðd;mÞ is required to describe the correlations that correspond
to the physical theory, together with the inherent uncertainties
of the theory (see Fig. 1b).

The modelling residual vector is the difference between the
model greal (perfect but unknown) and the available forward model
gðmÞ (known but imperfect). Again, that residual is assumed in this
paper as an additive Gaussian of zero mean:

eGðmÞ ¼ greal � gðmÞ
eG � Nð0;CGÞ

ð5Þ

where CG is the model covariance matrix giving information about
the size of the residuals and the correlation between them. The
matrix CG could be regarded as the model epistemic error and
expert judgement is required to estimate it. When the dependence
of d on m is mildly non-linear, Hðd;mÞ can be expressed as [17]:

H d;mð Þ / exp �1
2
ðgðmÞ � dÞT C�1

G ðgðmÞ � dÞ
� �

: ð6Þ

The conjunction of the information contained in qðd;mÞ and
Hðd;mÞ results in the updated or posterior probability density
function. The solution of the inverse problem is a new or a posteri-
ori pdf rmðmÞ which incorporates the information given by the
observed values dobs and it is consistent with the amount of mod-
elling and observational uncertainty [17] (see Fig. 1c):

Fig. 1. Inverse problem resolution (a) a priori parameter and observation marginals, qmðmÞ and qdðdÞ respectively, and joint probability functions, qðd;mÞ, (b) model joint
pdf, Hðd;mÞ, (c) a posteriori parameter and observation joint pdf, rðd;mÞ, and the a posteriori marginal parameter probability distribution function (pdf), rmðmÞ (adapted
from [17]).

42 A. Cañavate-Grimal et al. / Computers and Structures 159 (2015) 41–60



Download English Version:

https://daneshyari.com/en/article/6924394

Download Persian Version:

https://daneshyari.com/article/6924394

Daneshyari.com

https://daneshyari.com/en/article/6924394
https://daneshyari.com/article/6924394
https://daneshyari.com

