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a b s t r a c t

Structural topology optimization related to dynamic responses under stationary random force excitation
is investigated in this paper. It is shown that the commonly used Complete Quadratic Combination
method (CQC) in previous optimization work is not only computationally expensive but also results in
non-convergent design pattern due to the low computing accuracy of random responses for large-scale
problems. To circumvent these difficulties, an efficient and accurate optimization procedure integrating
the Pseudo Excitation Method (PEM) and Mode Acceleration Method (MAM) is introduced into the
dynamic topology optimization. In this framework, random responses are calculated using the PEM to
ascertain a high efficiency over the CQC. More importantly, the accuracy of random responses is
improved indirectly by solving the pseudo harmonic responses involved in the PEM with the help of
the MAM. Numerical examples fully demonstrate the validity of the developed optimization procedure
and its potential applications in practical designs.

� 2015 Published by Elsevier Ltd.

1. Introduction

As is well-known, the topological layout of a structure has a
dominant impact upon its dynamic performances and responses.
Since the work of Bendsøe and Kikuchi [1], topology optimization
method has been widely developed and applied in engineering
designs especially for static structures. However, many engineer-
ing structures experience not only static loads but also random
excitations such as earthquake ground motions, ocean wave
induced forces, aerodynamic and turbulent pressures and so on.
In general, random excitations can be classified into stationary
and non-stationary random excitations. If the ensemble averages
for a random excitation were time-independent, the excitation
would be stationary. Otherwise, it would be non-stationary. To a
large extent, some secondary structure designs were mostly based
on stationary random excitations [2] that were greatly considered
in the advanced formulations of dynamic optimization problems
[3–6].

However, results about dynamic topology optimization are few
up to now due to the inherent complexity of the problem.
Representative works were mostly limited to problems with a

small number of degrees of freedom (DOFs). For example, Rong
et al. [7,8] optimized the structural topology using the ESO method
with stationary random responses constrained in design. Zhang
et al. [9] dealt with topology optimization of multi-component
structures under both static loads and stationary random excita-
tions using density method. In fact, all the above works were car-
ried out by means of the CQC. As the CQC was cost-ineffective in
random analysis, the PEM [10–14] was thus introduced to transfer
the solving of random responses into the solving of pseudo har-
monic responses. Although both methods can completely achieve
the same solution with the same number of structural modes,
the efficiency of the PEM is much higher than the CQC. With this
advantage, Lin et al. [15] adopted the PEM as an efficient optimiza-
tion procedure in the maximization of the energy harvesting per-
formance under stationary random excitation. Nevertheless, how
to deal with dynamic topology optimizations of large-scale prob-
lems still rests a great challenge.

Another fatal problem in dynamic topology optimization of
large-scale problems is the severe convergence difficulty. In
authors’ previous work [16], it was revealed that the convergence
would be very poor even in design optimization of the harmonic
response if the latter was not accurate enough. Similarly, as
observed in Section 3.3, the truncation modes in both the CQC
and the PEM would also introduce computing errors into the
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random responses and even lead to unsatisfactory structure config-
urations after topology optimization. Theoretically, the errors
could be reduced by adopting a great number of modes in the
analysis, but the computing would be prohibitive especially for
large-scale problems. Meanwhile, how to select a proper number
of modes in advance is also challenging. Therefore, adopting a
great number of modes is neither a reasonable nor practical strat-
egy. In fact, the accuracy of random response can indirectly be
improved by increasing the accuracy of pseudo harmonic
responses computed within the framework of the PEM. Shi et al.
[17] introduced the MAM to replace the MDM involved in the
conventional PEM for structural analysis under multi-support
excitations. This combination of MAM and PEM provided a great
superiority in accuracy, computing efficiency and deserves further
explorations in dynamic optimization of large-scale problems.
With this motivation, the combined method of PEM and MAM is
further extended and integrated into the optimization procedure
to deal with large-scale dynamic optimization problems under
stationary random excitation. In this paper, sensitivity analysis
involved in this procedure is also presented. Based on numerical
examples, comparative studies are made with existing methods
to highlight the effectiveness of the developed optimization
procedure.

2. Analysis methods of structural dynamic responses under
stationary random force excitation

2.1. Complete quadratic combination method (CQC)

Now, consider a discretized n-DOF structure subjected to sta-
tionary random force excitation. The motion equation can be writ-
ten as

m€uðtÞ þ c _uðtÞ þ kuðtÞ ¼ bpðtÞ ð1Þ

where m, c, k represent the mass matrix, damping matrix and stiff-
ness matrix. p(t) is a d-dimension stationary random force vector of
non-zero values, whose power spectral density (PSD) matrix is of
d-dimension and denoted by Sp(x). Notice that b is a n � d transfor-
mation matrix representing the force distribution. In this paper,
bp(t) is assumed to be white-noise excitation with zero mean value,
i.e., a uniform power spectral density over the frequency interval.
By introducing the notation

uðtÞ ¼ uzðtÞ ¼
Xn

i¼1

uizi ð2Þ

where z(t) is the vector of generalized coordinates. Under the
assumption of classical damping with fi being the ith damping ratio,
following relations then hold

uT mu ¼ I

uT ku ¼ diagðx2
i Þ

uT cu ¼ diagð2fixiÞ

8>>><
>>>:

ð3Þ

where xi and ui represent the ith circular eigenfrequency and the
ith eigenvector, respectively. The mode shape matrix u = [u1. . .un]
is normalized by mass matrix. Then a number of n uncoupled equa-
tions of motion can be obtained by substituting Eq. (2) into Eq. (1)
and premultiplying uT.

€ziðtÞ þ 2fixi _ziðtÞ þx2
i ziðtÞ ¼ uT

i bpðtÞ ð4Þ

By means of the Duhamel integral, the time-domain solution of
Eq. (4) is [18]

ziðtÞ ¼
Z 1

�1
uT

i bpðt � sÞhiðsÞds ð5Þ

where hi(s) is the unit impulse response function related to the sin-
gle DOF system of Eq. (4)

hiðsÞ ¼
e�fixis

mi

ffiffiffiffiffiffiffiffi
1�f2

i

p
xi

sin
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

i

q
xis s P 0

0 s < 0

8<
: ð6Þ

with

mi ¼ uT
i mui ð7Þ

It follows that

uðtÞ ¼
Xn

i¼1

uizi ¼
Xn

i¼1

uiu
T
i b
Z 1

�1
pðt � sÞhiðsÞds ð8Þ

The autocorrelation function of displacement response u(t)
reads [18]

RuðDÞ¼E½uðtÞuðtþDÞT �

¼
Xn

i¼1

Xn

k¼1

uiu
T
i b

Z 1

�1

Z 1

�1
RpðDþs1�s2Þhiðs1Þhkðs2Þds1ds2

� �
bTuku

T
k

ð9Þ

The PSD matrix of random displacement response Su(x) can
then be obtained by Fourier transformation of the above autocorre-
lation function

SuðxÞ ¼
1

2p

Z 1

�1
RuðDÞe�jxDdD ¼

Xn

i¼1

Xn

k¼1

H�i Hkuiu
T
i bSpðxÞbTuku

T
k

ð10Þ

Hi denotes the frequency domain transfer function between loading
and response

Hi ¼ ðx2
i �x2 þ 2jfixixÞ

�1 ð11Þ

with j2 = �1. Actually, it is almost impossible to use all the n modes
in the computing process of Eq. (10) especially for large-scale prob-
lems. Suppose l is the number of modes employed in the computing
with l� n, Eq. (10) is then approximated as

SuðxÞ ¼
Xl

i¼1

Xl

k¼1

H�i Hkuiu
T
i bSpðxÞbTuku

T
k ð12Þ

The CQC method [10,11,18] consists in obtaining the PSD matrix
of random displacement response by computing Eq. (12) directly.
Since the latter involves the cross-correlation terms between all l
participant modes, the computing would be very expensive for
large values of l.

2.2. Conventional pseudo excitation method (PEM)

Since the PSD matrix Sp(x) is Hermitian, it can be decomposed
into [11]

SpðxÞ ¼
XQ

q¼1

ðcqÞ
�ðcqÞ

T ð13Þ

in which Q is the rank of Sp(x). Therefore, Eq. (12) can be rewritten
as

SuðxÞ ¼
XQ

q¼1

Xl

i¼1

uiu
T
i Hibcq

 !� Xl

k¼1

uku
T
k Hkbcq

 !T

ð14Þ

Suppose

gqðtÞ ¼
Xl

i¼1

uiHiu
T
i bcqejxt ð15Þ
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