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a b s t r a c t

In the last few decades the interest of aerospace and automotive industries towards the study of the
medium-frequency response of complex shell structure frames has grown. Recently some dedicated
‘‘wave’’ computational approaches have been developed. Among them, a Trefftz technique called
Variational Theory of Complex Rays (VTCR) is catching on as an ad hoc method to deal with such vibration
problems. This work presents the development of the VTCR in the shallow shell theory to increase its
effectiveness and flexibility. First, general theory is given and two key properties of the solution demon-
strated. After that, two numerical examples are deeply analyzed.

� 2015 Published by Elsevier Ltd.

1. Introduction

In recent years, the interest of aerospace and automotive indus-
tries has been focused on efficient virtual testing of the vibration
response. Shallow shell structures are widely used in these indus-
trial contests due to their high resistance and light weight. The
equilibrium equations of shallow shells are quite complex and in
almost every real case an analytic solution cannot be obtained.
Thus, an effective method to predict vibrational behavior in shal-
low shell structures is needed. The Modal Overlap Factor [1]
defines three zones: low, mid and high frequency range. The
low-frequency range has been extensively studied by the Finite
Element Method (FEM) [2] and the Boundary Element Method
(BEM) [3]. On the other side, the high-frequency range can be
addressed by the Statistical Energy Analysis (SEA) [1]. This tech-
nique neglects almost entirely spatial quantities to focus on global
energy. This effective approach is based on some key assumptions
assured in the high-frequency range. The medium-frequency range
is still an open question. On one hand the FEM and BEM are not
indicated in this frequency domain since the phenomena variation
length is very small if compared to characteristic dimensions of the
structure. For this reason the required number of Degrees of

Freedom (DoFs) explodes [4]. On the other hand the SEA is not sug-
gested because the key assumptions of the theory might be unsat-
isfied [5]. Notwithstanding a lot of work has been done to extend
such theories to the medium-frequency range [6–8]. There are also
methods developed specifically for the medium-frequency range
such as the partition of unity method [9], the ultra-weak varia-
tional method [10], the asymptotic scaled modal analysis [11],
the energy operator eigenmodes [12], Galerkin method [13], the
wave boundary element method [14] or the wave-based method
[15,16]. One of them is the Variational Theory of Complex Rays
(VTCR). It approximates the vibrational problem solution with a
sum of shape functions that identically satisfies the equilibrium
equations while addressing the boundary conditions in weak form.
This approach allows a priori independent approximations among
subdomains. Thus, different (in number and type) shape functions
can be chosen for each subdomain giving great flexibility to the
method. It has already been applied to plate theory [17], to general
shell theory [18], to transient dynamics [19], to 3D acoustic [20]
and, on a wide frequency band [21,22]. Nevertheless the shell ver-
sion of the VTCR can still be improved. Yet the in-plane inertia was
not taken into account in previous works, the weak variational for-
mulation must be customized for the specific geometry, and the
VTCR formulation does not address the general case of a boundary
(or a corner) shared by multiple subdomains. Such problems are
analyzed and solved in this work; the in-plane inertia assumption
is relaxed and two propagative waves that lead in-plane stresses
and displacements are introduced. The customization phase of
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the weak variational formulation is avoided using the shallow shell
approximation providing effectiveness and flexibility to the
method. Since in this theory the surface geometry is projected to
the underlying area, the tuning phase of the weak variational for-
mulation is no more needed. Finally, a more general version of
the VTCR is presented.

The present work is structured as follows: first, the general the-
ory is proposed providing some useful properties. After, two
numerical examples are presented. The first one is an academic
case where the analytic solution is known. Convergence tests are
performed and performances are compared with a FEM reference.
The second one is a complex structure frame.

2. Theory

In this Section the equilibrium and the boundary equations are
examined using the standard shallow shell approximations. The
theory is akin to the one provided in [23,24]. After, some useful
energy quantities are derived and the virtual work theorem is
adapted for this specific case.

2.1. The equilibrium equations

The general reference example is presented in Fig. 1. The focus
is on a generic subdomain Xi of the frame structure in Fig. 1. For
the sake of clarity various boundary, corner, coupling, and surface
conditions are split in Fig. 2. The @�Xi symbol refers to a generic
boundary of Xi where condition � is applied. In the particular case
of a boundary shared among subdomains, C is used instead. In the
same way, for the conditions applied on corners, a symbol @@�Xi is
used. The generic corner shared among subdomains is indicated
with C. The over-line symbol � indicates that quantity � is known
(i.e. the value of the boundary constraint). The term n̂i is the nor-
mal unit vector of the boundary directed outward Xi. A subdomain
is subject to loads, displacements constraints, and continuity con-
ditions along the boundaries (Fig. 2a) and on the corners (Fig. 2b)
as well as a distributed load per unit surface gi (Fig. 2d). The dis-
placement constraint ui ¼ v0i;wi

� �0 along @ui
Xi can be divided in

in-plane vi and out-of-plane wi components.1 In the same way,

the load per unit length pi ¼ b0i; qi

h i0
along @pi

Xi can be divided in

in-plane bi and out-of-plane qi components. The rotation condition
wi;n̂i

is imposed along @wi;n̂i
Xi while a bending moment per unit

length mi is applied along @mi
Xi. The corners of the subdomain are

subject to out-of-plane displacements constraints wCi on @@wCi
Xi

and punctual forces qCi on @@qCi
Xi. Coupling conditions are applied

on C and along C, in order to ensure continuity of stresses and dis-
placements among subdomains (Fig. 2c).

All quantities of interest are defined in the complex domain.
Each one is considered multiplied by e jxt where j ¼

ffiffiffiffiffiffiffi
�1
p

is the
imaginary unit, x ¼ 2pf is the angular frequency and t is the time.

The geometry of the subdomain can be approximated by its
projection on the local plane defined by the orthonormal basis
x̂i; ŷi; ẑif g and the displacement field can be restricted to

(Kirchhoff’s kinematics assumptions)

u z
i ¼ ui � zi/i

/i ¼ $wi � Ri � vi

Ri ¼
1

Rxi
0

0 1
Ryi

2
4

3
5

where u z
i is the displacement thorough the thickness of the shell,

ui;vi and wi are respectively the total, the in-plane and the
out-of-plane displacements of the middle surface and Ri is the cur-
vature matrix. Di ¼ ui;Ni;Mif g is the set of fields that satisfies the
equilibrium equations

u z
i 2 U z

i finite energy displacement set; ð1Þ
Ni;Mif g 2 Si finite energy generalized stress set; ð2Þ

$ � Ni þ gxyi þ .ihix2vi ¼ 0 over Xi; ð3Þ
r � $ �Mið Þ þ Ri : Ni þ gzi þ .ihix2wi ¼ 0 over Xi; ð4Þ
gi ¼ gxi; gyi; gzi

� �
0; ð5Þ

gxyi ¼ gxi; gyi
� �

0; ð6Þ
Mi ¼ �DiHi : $$wi; ð7Þ

Ni ¼
12

h2
i

DiHi : Ei � Riwið Þ; ð8Þ

Ei ¼ $vi½ �sym ¼
1
2

$vi þ $vi0ð Þ; ð9Þ

Di ¼
Eih

3
i

12 1� m2
i

� � ; ð10Þ

Ei ¼ E0i 1þ jgið Þ; ð11Þ

where DiHi is the Hooke’s operator for plane stress, .i the density, gi

the damping coefficient, hi the shell thickness, E0i the Young modu-
lus, mi the Poisson’s ratio, � : � the inner product matrix operator,
and Ni and Mi are the stress and stress moment resultants tensors
respectively. The sub-space of Di associated with homogenized con-
ditions (gi ¼ 0) is denoted as D0i ¼ dui; dNi; dMif g. This definition
will be useful in the next Sections.

2.2. The boundary conditions

In order to present a well-posed problem, three conditions
imposed along each boundary and one on each corner are needed.
The boundary and corner conditions presented in Fig. 1 can be clas-
sified in this way:

1. an in-plane condition, either a displacement constraint or a load

per unit length (vi or bi),
2. an out-of-plane condition, either a displacement constraint or a

load per unit length (wi or qi),
3. either a rotation or a bending moment per unit length (wi;n̂i

or
mi),

4. an out-of-plane condition, on corners either a displacement
constraint or a punctual load (wCi or qCi).

These boundary conditions can be imposed along edges and on
corners shared among subdomains. On one hand, if the constraint
is a displacement or a rotation and there is more than one subdo-
main involved there is no need of the relative coupling condition.
In other words the subdomains can be considered decoupled for
what concerns that particular constraint. On the other hand, if
the condition is a load and there is more than one subdomain

Fig. 1. Generic frame structure described in Section 2.1.

1
�
0 is the transpose operator.
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