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a b s t r a c t

This paper presents an Arbitrary Lagrangian Eulerian (ALE) formulation derived from the Reynolds trans-
port theorem to accurately solve certain problems of three-dimensional unsteady Newtonian flows with
free surfaces. The analysis problems addressed are those without breaking waves or waves spilling over
obstructions. The proposed method conserves mass very accurately and obtains stable and accurate
results with large time steps, and even when using rather coarse meshes. The continuum mechanics
equations are formulated and the three-dimensional Navier–Stokes equations are solved using a ‘flow
condition based interpolation’ (FCBI) scheme for a tetrahedral finite element using finite volume con-
cepts. Various example solutions are given to indicate the effectiveness of the solution schemes.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Free surface fluid flow analyses solve problems with continu-
ously moving fluid domains. Many industries require free surface
solutions, such as vehicle dynamics and earthquake engineering.
If free surfaces are not correctly calculated and designed for, the
dynamic system may be affected with possible dangerous conse-
quences, for example, an instability may arise due to the fluid
motion in large fuel tanks.

Because of the importance of correct free surface solutions,
many researchers have attempted to develop methods to calculate
incompressible free surface flows in various fields, see for example
Refs. [1–10] and the references therein. The Volume of Fluid (VOF)
method is a well-known scheme for an Eulerian approach and uses
density functions. This approach can ensure mass conservation but
a serious disadvantage of the method is that it does not accurately
capture free surfaces and interfaces especially in the calculation of
three-dimensional flow problems. Another widely used free sur-
face flow calculation method is the level set scheme. This method
makes it relatively easy to capture a free surface accurately, using a
function which has zero value contour on the free surface as an
identifier. However, while the method has desirable capabilities
to establish free surfaces and interfaces, difficulties arise in con-
serving the total mass of the fluid. Of course, these two approaches
can also be combined to reach a more effective scheme. An impor-
tant Lagrangian approach for free surface analyses is the Smoothed
Particle Hydrodynamics (SPH) method. The SPH scheme is

attractive because a simulation does not require a mesh.
However, the disadvantages are that artificial constants such as
smoothing factors are used and the method may induce spurious
oscillations; thus, it can be difficult to find an accurate solution.

In this paper, we develop an improved numerical method that
accurately establishes the free surfaces and robustly achieves mass
conservation without requiring any a posteriori mass conservation
treatment. The formulation uses an arbitrary Lagrangian–Eulerian
(ALE) method with a special focus on the condition of accurate
mass conservation during long-time response.

The finite element method is employed because of its strong
mathematical foundation and the possibility to directly evaluate
the Jacobians used for the Newton–Raphson iterations [11]. For
the effective solution of the three-dimensional fluid flows governed
by the Navier–Stokes equations, we develop a weak formulation of
the tetrahedral MINI element (slightly modified) with step weight-
ing functions and flow-condition-based interpolations (FCBI) for
the trial functions in the convective terms [12–14]. This approach
ensures that the inf–sup condition for modeling incompressible
response is passed and stability is maintained regarding the con-
vective terms for high Reynolds number flows. The contribution
in the paper is the formulation and the specific 3D element given
for the free surface flow conditions considered herein.

In the next sections we first present the finite element formula-
tion and then we give illustrative example solutions.

2. Finite element formulation

In this section, we present a finite element ALE formulation for
the transient solution of incompressible fluid flows with free
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surfaces or interfaces. ALE approaches have of course been amply
pursued, see e.g. [15–18], but we focus here on using the
Reynolds transport theorem in implicit time integration to achieve
a formulation that is effective when using large time steps and
coarse finite element meshes.

2.1. Governing equations

Considering the complete fluid flow domain, we have the kine-
matic relation for the free surface

ðu� umÞ � n ¼ on Sf � ½0; T� ð1Þ

and the mass conservation equation

@q
@t
þr � qu ¼ 0 in Vf � ½0; T� ð2Þ

where n is the unit normal vector on the free surface Sf (and also
used on any fluid domain), Vf denotes the complete fluid domain

(see Fig. 1), q is the mass density, u is the fluid velocity, um is the
velocity of an underlying medium of observation, which in the
ALE formulation is the mesh velocity, and T denotes the time span
considered. We assume zero surface tension, and while not explic-
itly noted variables are of course a function of the spatial coordi-
nates x and time t.

Eq. (1) is the kinematic relation on the free surface that is
included to satisfy the condition of mass conservation and cor-
rectly identify the moving free surface. The mass conservation con-
dition for the interior, Eq. (2) looks as used in compressible flows
but we use it here for incompressible flows because we know that
the density at a fixed point may change in time due to the motion
of the free surface through the fixed point.

In the fluid domain, we name X the moving control volume and
C the surface that encloses the control volume. Using the Reynolds
transport theorem, the mass conservation equation in a moving
control volume is

d
dt

Z
X
qdXþ

Z
C
qðuc � nÞdC ¼ 0 ð3Þ

where n is here the outward pointing unit normal to C, and uc

denotes the convective velocity given by

uc ¼ u� um ð4Þ

Hence we haveZ
C
qðu � nÞdC ¼ � d

dt

Z
X
qdXþ

Z
C
qðum � nÞdC ð5Þ

The momentum equation using the Reynolds transport theorem is

d
dt

Z
X
qudXþ

Z
C
q uucþpI�l ruþruT

� �� �
�ndC¼

Z
X

gqdX ð6Þ

where g is the gravitational acceleration vector. Note that the iner-
tial term accounts for the time rate of change of control volume size.
In Eq. (6), we used the stress s given as

s ¼ sðu;pÞ ¼ �pI þ l ruþ ðruÞT
n o

ð7Þ

with I the identity tensor, p the pressure and l the viscosity.
The essential boundary conditions are

u ¼ uS; x 2 Sv ð8Þ

and the natural boundary conditions are

s � n ¼ f S; x 2 Sf ð9Þ

where uS is the prescribed velocity on the boundary Sv , f S is the pre-
scribed traction on the boundary Sf , with S ¼ Sv [ Sf and Sv \ Sf ¼ ;,
for the fluid domain, where S denotes the complete boundary.

To solve the momentum and mass conservation equations, Eqs.
(5) and (6), we use a Petrov–Galerkin variational formulation in the
subspaces Uh, Vh and Wh for the velocities and subspaces Ph and Q h

for the pressure p. The finite element formulation is:
Find u 2 Uh;v 2 Vh and p 2 Ph such that for all w 2Wh and

q 2 Q h

d
dt

Z
X

qqdXþ
Z

C
qq½ðu� umÞ � n�dC ¼ 0 ð10Þ

d
dt

Z
X

w½qu�dXþ
Z

C
w½qvfðu� umÞ � ng�dC�

Z
C

w½sðu; pÞ � n�dC

¼
Z

X
w½qg�dX ð11Þ

In Eqs. (10) and (11), the trial functions in Uh and in Ph are the con-
ventional finite element interpolations for velocity and pressure,
respectively. We select these to satisfy the inf–sup condition of
the analysis of incompressible media [19]. The advection term,
which is not considered in the Stokes flow assumptions, requires
different trial functions in Vh from the functions in Uh. The trial
functions in Vh should lead to stability of the method when higher
Reynolds number flows are considered and we use the
flow-condition-based interpolation approach [12]. Step weight
functions are chosen in the spaces Wh and Qh, to achieve local con-
servation of momentum and mass, respectively. Hence the formula-
tion is in fact a hybrid between the traditional finite element and
finite volume formulations.

2.2. 3D tetrahedral MINI element

The motivation for the development of the tetrahedral element
is to be able to generate meshes for complicated 3-D geometries.
However, for simple geometries we can use meshes based on hex-
ahedra that are subdivided into tetrahedra. One hexahedron is
divided into 6 tetrahedral elements, see Fig. 2.

To establish an FCBI scheme for tetrahedral grids that can be
used to solve problems with complex geometries, we develop the
MINI tetrahedral element using interpolations to satisfy the inf–
sup condition, to give stability in the convective terms, and to sat-
isfy mass and momentum conservation locally [11,12,19].

In a slight modification, instead of using the usual cubic bubble
for the MINI element, we use a linear hat function [11].

Fig. 3 shows a MINI element in which the velocity is defined at
five nodes, at the local node numbers 1–5, while the pressure is
defined at four nodes, at the local node numbers 1–4, in order to
satisfy the inf–sup condition [11]. The flux is calculated with inter-
polated values at the centers of the surfaces of the control volumes
for the nodes.

Ω

fS

Γ

fV

n

Fig. 1. Complete fluid domain with a free surface.
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