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a b s t r a c t

The phase-field crystal equation, a parabolic, sixth-order and nonlinear partial differential equation, has
generated considerable interest as a possible solution to problems arising in molecular dynamics.
Nonetheless, solving this equation is not a trivial task, as energy dissipation and mass conservation need
to be verified for the numerical solution to be valid. This work addresses these issues, and proposes a
novel algorithm that guarantees mass conservation, unconditional energy stability and second-order
accuracy in time. Numerical results validating our proofs are presented, and two and three dimensional
simulations involving crystal growth are shown, highlighting the robustness of the method.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

While the tight connection between material processing, struc-
ture and properties has been known for years, a microstructural
model capable of accounting for the atomic scale features affecting
the macroscale properties of a material has not yet been estab-
lished. Progress has nonetheless been made in this direction, and
this work tackles one of the solution strategies that has recently
been proposed through the phase-field crystal equation (PFC).
Developed as an extension to the phase-field formalism in which
the fields take spatially uniform values at equilibrium [1,2], the
free energy functional in the case of the PFC equation is minimized
by periodic states. These periodic minima allow this particular
phase-field model to represent crystalline lattices in two and three
dimensions [3,4], and more importantly, to capture the interaction
of defects that arise at the atomic scale without the use of addi-
tional fields, as is done in standard phase-field equations [5]. This
model has also been shown to successfully cross time scales [6],
thanks in part to the phase-field variable that describes a coarse
grained temporal average (the number density of atoms). This dif-
ference in time scale with molecular dynamics, along with the
periodic density states that naturally give rise to elasticity,

multiple crystal orientations and the nucleation and motion of dis-
locations, are some of the reasons why this tool is being considered
for quantitative modeling [7,8].

Several challenges are unfortunately faced while simulating the
PFC numerically. It is a sixth-order, nonlinear, partial differential
equation, where the solution should lead to a time-decreasing free
energy functional. Recent work on this topic includes [9–14].
Inspired by the work presented for the Cahn–Hilliard equation in
the context of tumor-growth [15], we developed a formulation
capable of conserving mass, guaranteeing discrete energy stability
while having second-order temporal accuracy. The numerical
scheme achieves this through a convex splitting of the nonlinearity
present in the equation, along with the addition of a stabilization
term, while using a mixed form that segregates the partial differen-
tial equation into a system of three second order equations. This is
similar in a sense to what was done in [12], where a mixed form is
also used, but has the added advantage that the well-posedness of
the variational form does not require globally C1-continuous basis
functions. This presents an advantage in terms of computational
cost [16–18] as linear, C0 finite elements can be used.

We provide mathematical proofs for mass conservation, energy
stability and second-order accuracy, properties that the algorithm
possesses, along with two-dimensional numerical evidence that
corroborates our findings. We also present three dimensional
results that showcase the effectiveness and robustness of our algo-
rithm. The paper is structured as follows: In Section 2, we describe
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the phase field crystal equation. In Section 3, we present our
numerical scheme. Section 4 presents numerical examples dealing
with crystal growth in a supercooled liquid. We give concluding
remarks in Section 5.

2. Phase-field crystal model

By using a free energy functional that is minimized by periodic
density fields, the phase-field crystal equation is capable of
representing crystalline lattices [1], and more importantly, captur-
ing the interaction between material defects implicitly. The model
is characterized by a conserved field related to the atomic number
density, that is spatially periodic in the solid phase and constant in
the liquid phase. It has been related successfully to other contin-
uum field theories such as density-functional theory [6,19]. This
work will show examples related to crystalline growth, as the
PFC equation has found much of its success in modeling
microstructural evolution [2,6,20–22], while it has also been used
to model other physical phenomena such as foam dynamics [23],
glass formation [24], liquid crystals [25], elasticity [1] and in the
estimation of material properties [26].

Experimental and computational results can differ significantly,
but work is nonetheless being done to reduce the mismatch
[26–29]. The model that is considered in this work can be improved
by increasing the number of critical wavelengths one considers in
the free energy functional at the expense of computational cost,
as the partial differential equation becomes harder to solve [8,28].
Also, molecular dynamics in a multi-scale setting can be used to
estimate some of the parameters going into the phase-field crystal
equation [30], and inverse formulations of the problem could be
considered to validate the calculations [31]. Hopefully, these
multi-scale approaches will allow for more complete studies on
polycrystalline growth using the PFC equation, such as the ones
presented in [32,33] in the setting of phase-field modeling.

2.1. Model formulation

The phase-field crystal equation was developed to study the
evolution of microstructures, at atomic length scales and diffusive
time scales, by considering a conservative description of the
Rayleigh-Bénard convection problem [3]. The order parameter /
represents an atomistic density field in the model, which is
periodic in the solid state and uniform in the liquid one. The free
energy functional for the phase-field crystal equation in its
dimensionless form is given by [2,4,12]

F½/ðxÞ� ¼
Z

X
Wð/Þ þ 1

2
/2 � 2jr/j2 þ ðD/Þ2
� �� �

dX; ð1Þ

where X 2 Rd represents an arbitrary open domain, with d ¼ 2 or 3,
and W /ð Þ ¼ � �

2 /2 þ 1
4 /4. The parameter � represents a critical tran-

sition variable, which in the case of crystal growth is associated to
the degree of undercooling: the larger its value, the larger the
undercooling is. The free energy functional presented in Eq. (1) is
then minimized to achieve thermodynamical stability. To enforce
this mathematically, one solves the Euler–Lagrange equation for
the free energy, and takes its variational derivative with respect
to /. The variational derivative is given by

dF
d/
¼ @F
@/
�r � @F

@r/
þ D

@F
@D/

¼ ð1þ DÞ2/þW0ð/Þ; ð2Þ

where r�;r and D denote the divergence, gradient and Laplacian

operators, respectively, and W0ð/Þ ¼ ��/þ /3 with ð1þ DÞ2 ¼
1þ 2Dþ DD. The partial differential equation, considering that the
atomistic density field is a conserved quantity [2], is then
formulated as

@/
@t
¼ r � Mr dF

d/

� �
; ð3Þ

where / � / x; tð Þ represents the phase field, x and t represent space
and time, respectively, M is the mobility, and F is the free energy
functional of the system. The partial differential equation, after sub-
stituting Eq. (2) into (3), becomes

@/
@t
¼ r � r 1þ Dð Þ2/þW0ð/Þ

h i
¼ D 1þ Dð Þ2/þW0ð/Þ

h i
;

where the mobility M is assumed equal to a constant of value one.

2.2. Phase-field crystal equation: strong form

The problem is stated as follows: over the spatial domain X and
the time interval �0; T½, given /0 : X#R, find / : X� ½0; T�#R such
that

@/
@t ¼ D 1þ Dð Þ2/þW0ð/Þ

h i
on X��0; T�;

/ðx;0Þ ¼ /0ðxÞ on X;

(
ð4Þ

where /0ðxÞ represents a function that approximates a crystalline
nucleus, and periodic boundary conditions are imposed in all direc-
tions. We discuss the choices made to handle initial conditions in
Section 4.

3. Stable time discretization for the phase-field crystal equation

The phase-field crystal equation is a sixth-order, parabolic par-
tial differential equation. If an explicit time-stepping scheme were
employed to solve it, a time step size Dt on the order of the sixth
power of the grid size would be required. This restriction has moti-
vated research in implicit algorithms [9–12] and adaptive algo-
rithms [34]. On top of this, some properties need to be
guaranteed while solving the equation, such as mass conservation,
defined asZ

X

@/
@t

� �
dX ¼ 0 ð5Þ

due to the fact that density is conserved, as well as strong energy
stability [9], expressed as

F / tnþ1ð Þ½ � 6 F / tnð Þ½ � 8n ¼ 1;2; . . . ;N; ð6Þ

which translates to having the free energy be monotonically
decreasing. In this work, we develop an algorithm that extends
the ideas presented in [11,15], guarantees the properties presented
in Eqs. (5) and (6), while achieving second-order accuracy in time.
The discretization in space is done using isogeometric analysis
(IGA), a finite element method where NURBS are used as basis func-
tions [35]. The method not only allows to control the spatial resolu-
tion of the mesh (h-refinement) and the polynomial degree of the
basis (p-refinement), but also to increase their global continuity
(k-refinement). Isogeometric analysis has successfully been applied
to phase-field modeling [12,13,36–41]. The PFC model, being a non-
linear, sixth-order in space, first-order in time partial differential
equation, allows for many choices in terms of discretizations and
time stepping schemes. High-order, globally continuous basis func-
tions can be easily generated within the IGA framework. This is the
reason why it allows for the straightforward discretization of
high-order partial differential equations. Alternatively, mixed for-
mulations can be employed so as to reduce the continuity require-
ments down to standard C0 spaces used in traditional finite element
methods. This work makes use of a mixed form, where the system
that is solved involves a coupled system of three second-order
equations.

356 P. Vignal et al. / Computers and Structures 158 (2015) 355–368



Download English Version:

https://daneshyari.com/en/article/6924469

Download Persian Version:

https://daneshyari.com/article/6924469

Daneshyari.com

https://daneshyari.com/en/article/6924469
https://daneshyari.com/article/6924469
https://daneshyari.com

