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a b s t r a c t

This paper presents an alternative reanalysis algorithm based on the block matrix to address problems
with local modifications. In this method, the modified stiffness can be classified as three parts: influenced
region, stationary region and an interface region between them. The main computation cost concentrates
on the influenced region by this specific blocked strategy. Compared with popular reanalysis methods,
the proposed method can achieve an accurate response for large modification with lower computation
cost. Several practical engineering problems are analyzed and the results are exactly as that performed
by full analysis.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Generally, although the modifications in each iterative design
are local, the corresponding computational cost is expensive since
the full analysis is commonly still repeatedly performed. Therefore,
reanalysis techniques attempt to analyze structures efficiently and
avoid full analysis after modifications. They have been successfully
employed in various classes of structural reanalysis problems, e.g.,
such as vibration, nonlinear, dynamical. Considering the scale of
changes, changes always can be classified as small, medium and
large changes. Many suitable methods have been developed in
recent decades.

For small changes, in the 1960s, Sherman and Morrison pre-
sented a direct method (DM), the method gives an exact solution
where the change is only a given column or row of the original
matrix [1].Woodbury proposed a Sherman–Morrison–Woodbury
(SMW) formula, it is applicable to the situation where a relatively
small proportion is changed, and the changes in the stiffness
matrix could be represented by a small sub-matrix [2]. In 1988,
the theorems of geometric variation were developed for the reanal-
ysis of finite element structures when variations in the
co-ordinates of the nodes of the elements are considered by
Topping and Kassim [3]. Continuously, the theorems of geometric
variation were applied into the nonlinear reanalysis problems
[4]. In addition, the classical Taylor series and the binomial series
expansion were utilized where the design variables have small

changes. Akgün et al. proposed an approach that extended the
low-cost method for low rank modifications to non-linear exact
reanalysis along the spirit of the SMW formula [5]. Based on the
sub-structuring technique, Kaveh and Fazli presented a simple
and efficient graph method for the formation of cycle basis of the
graph model, it is proposed for imposing the boundary conditions
in the force method [6]. Pais et al. suggested an exact reanalysis
algorithm based on an incremental Cholesky factorization, which
could solve a linear system when a small portion of the coefficient
matrix was modified [7].

For medium changes, in the early 2000s, a much smaller
reduced system to approximate the response for a large system
is suggested by Fox and Noor, respectively [8,9]. Fleury considered
the second-order approximation and took the hybrid first–second
order convex approximation strategies, the quality of results had
a significant improvement [10,11]. Using polynomial fitting and
response surface method (RSM), Haftka and Unal used simple func-
tions to replace the response functions [12,13]. After the year 2000,
based on the Neumann series expansion and epsilon-algorithm,
Chen and Wu developed a new eigenvalue reanalysis method
[14]. Xu et al. presented a method for the static reanalysis which
uses super-linear convergence property of the Broyden–Fletcher–
Goldfarb–Shanno (BFGS) quasi-Newton algorithm [15]. Chen
et al. developed a new static displacement reanalysis method for
structures by integrating perturbation and Padé approximation
[16]. Yang et al. proposed an efficient multi-sample compression
algorithm for elastoplastic nonlinear finite element method
(FEM) [17]. Kaveh and Fazli used sub-structuring technique and
modal approximations to reduce the size of the governing eigen-
problem with slight perturbations of the regular structures [18].
Using the equilibrium equations and the singular value
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decomposition (SVD), Kaveh et al. presented an efficient method
for the analysis of those structures which can be formed by adding
some members to the regular structures [19]. In addition, Rahami
et al. gave an exact solution which is similar to sub-structuring
method for solving irregular structures composed of regular and
irregular parts [20]. Huang and Wang proposed a static reanalysis
method without any auxiliary matrix operations called indepen-
dent coefficient (IC) method for large-scale problems [21]. Based
on the improved combined approximation (CA) method with shift-
ing and matrix–matrix operations with Level-3 Basic Linear
Algebra Subprograms (BLAS), Zheng et al. presented an efficient
method for vibration reanalysis, which can calculate several eigen-
pairs of modified structure simultaneously [22]. Compared with
these methods, the CA method might be the most popular one in
recent years. The CA method was proposed by Kirsch in 1981
[23]. The advantage of the CA is that the efficiency of local approx-
imations and the accuracy of global approximations are integrated.
It has been proved to be feasible for static reanalysis, structural
optimization, eigenvalue-problem, nonlinear analysis, dynamic
reanalysis and sensitively analysis [24–28].

For large changes, in recent years, Chen presented an efficient
method for determining the modified modal parameters in struc-
tural dynamic modifications [29]. Yang et al. suggested an adaptive
static reanalysis method based on the Neumann series and epsilon
algorithm when structural modifications are relatively large [30].
Zuo et al. proposed a new hybrid Fox and Kirsch’s reduced basis
method for structural static reanalysis [31]. Massa et al. focused
on the modal reanalysis of structures subjected to multiple modi-
fications of various origins, which could greatly affect the mode
shapes [32]. He and Jiang suggested a new improved method for
structural dynamic reanalysis with large changes in structural
topology possessing added degrees of freedom (DOFs) in 2011
[33]. Song et al. proposed a novel direct reanalysis algorithm based
on the binary tree characteristics to find updated triangular factor-
ization for high-rank structural modifications [34]. Wang and
Li, et al. proposed a parallel approximated inverse matrix based
on symmetric successive over-relaxation (SSOR) and compressed
sparse row (CSR) for real large scale problems [43].

To clarify the categories of reanalysis methods based on the
scale of changes, different reanalysis methods and applications
are shown in Table 1 Generally, most of reanalysis methods can
achieve exact solutions for small changes, and predict approxima-
tions for medium-large modifications efficiently. For large changes,
there is a considerable increase in computational effort when the
higher order series are utilized. Furthermore, in order to guarantee
the accuracy of approximations for repeated modifications, the
adaptive strategy should be suggested to avoid accumulated errors.

The purpose of this study is to obtain accurate solution same as
the solution obtained by FEM efficiently after modifications. The
problem can be stated as shown in Fig. 1. Assuming the influence
domain S0 belongs to an entire design space X. Boundary C denotes
the boundary between influence domain joined with the whole
space X. After local modification, the corresponding influence
domain Sm is changed, such as added hole, and the boundary C
always keeps the same as the initial structure. In this study, we
try to find an exact block-based (BB) method based on the block
matrix inversion [35–39] and calculate the corresponding response
after modifications efficiently and accurately. The method can be
divided into offline and online stages. In the offline stage, the initial
stiffness matrix can be partitioned into influenced region, station-
ary region and interface boundary between them. The block-wise
matrix is calculated and influenced system is constructed which
is unrelated to stationary region. In the online stage, modified stiff-
ness matrix also can be classified into three corresponding regions.
The calculations of block-wise matrix mainly concentrate on mod-
ified influenced region and boundary interface. Thus, the modified
system can be considered as an updated influenced system.
Furthermore, the BB method is still efficient for the local modifica-
tions when the percentage of influenced region is larger than 10%,
and the accuracy keeps the same as the full analysis.

In the following sections, DM, CA and block matrix inversion are
briefly introduced in Section 2. Basic theories and the details of the
BB method are presented, and the corresponding performance val-
idations are discussed in Section 3. A simple case and two practical
examples are demonstrated in Section 4 and conclusions are given
in Section 5.

Nomenclature

S0 influence domain
X entire design space
C interface boundary
Sm modified influence domain
ns the given starting nodes in stationary region
ni the given starting nodes in influenced region
nb the given starting nodes in interface boundary
Ns, the number of nodes in stationary region
Ni the number of nodes in influenced region
Nb the number of nodes in interface boundary

Matrices and vectors
K stiffness matrix
R load vector
r displacement vector
L, Ls, Lc0, Lcm lower triangle matrices
DK the changes of stiffness matrix
W, W1 defined by Eq. (5)
Kd defined by Eq. (8)
ri basis vector
rB the matrix of basis vectors
B defined by Eq. (14)
KR reduced stiffness matrix

RR reduced load vector
y coefficients vector
A a positive-definite square matrix
S stationary matrix
U upper-right of block-wise matrix
V lower-left of block-wise matrix
D lower-right of block-wise matrix
Kc0 initial condensed matrix
Kcm modified condensed matrix
Rc0 defined by Eq. (29)
Rcm defined by Eq. (40)

Subscripts and superscripts
0 subscript denotes initial structure
m subscript denotes modified structure
s(0) subscript denotes stationary region of initial structure
sðmÞ subscript denotes stationary region of modified struc-

ture
ii(0) subscript denotes influence region and interface bound-

ary of initial structure
ii(m) subscript denotes influence region and interface bound-

ary of modified structure
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