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a b s t r a c t

We propose a guided Bayesian inference approach for detection and quantification of multiple flaws in
structures without a priori knowledge on the number of flaws. Uncertainties due to modeling errors
and measurement noise are explicitly considered in the Bayesian framework. Flaws are approximated
by circular-shaped voids that can be easily represented by a set of parameters including the center coor-
dinates and the radii. The extended finite element method (XFEM) is employed as the forward solver in
the inverse detection framework, where re-meshing requirements in the vicinity of the flaws are com-
pletely alleviated. By comparing the measurement data and the output of the XFEM forward model,
Bayes’ theorem is used to update the probability distributions of the flaw parameters, leading to a full
statistical quantification of flaws. Since the number of flaws is unknown beforehand, a trans-dimensional
reversible jump Markov chain Monte Carlo (RJMCMC) algorithm is employed for sampling the posterior
distributions of flaw parameters within the varying parameter spaces. The RJMCMC algorithm is guided
by predefined prior information which is based on damage indices defined at each sensor location. These
indices are obtained by comparing the undamaged and damaged measurement states. Numerical studies
are carried out to demonstrate the effectiveness of the proposed statistical multiple-flaw quantification
method.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The increasing emphasis on integrity of critical structures such
as aircrafts, civil infrastructures, and pressure vessels, urges the
needs to monitor structures so as to detect flaws at an early stage
to prevent catastrophic failure. During the past two decades, with
the advances in the area of structural health monitoring (SHM), a
wide range of techniques for flaw detection and quantification
have been proposed and validated numerically and/or experimen-
tally [1–3]. Among these developments are model-based methods,
which can quantitatively identify the location and size (extent) of
flaws and have drawn significant attention [4–15].

Mathematically speaking, model-based methods can be viewed
as a nonlinear inverse process, in which flaw parameters of the
model are iteratively updated to match the structural response.
The response of the structure is usually captured by a set of sen-
sors. Hence, the problem is often translated into an optimization
problem with the objective to minimize the discrepancies between
the forward model output and the sensor measurement.

When modeling the forward problem, the traditional finite ele-
ment method (FEM) is a straightforward tool [4–7]. It has been
widely used in model-based damage detection for discrete truss
and frame structures using either static or dynamic responses.
However, for continuum structures like plates, FEM involves the
issue of remeshing the computational domain to conform the
boundaries of flaws at each updating step, which is a non-trivial
and time-consuming task, especially for complex flaws and their
host media. One alternative to overcome the costly remeshing
tasks is to employ the boundary element method (BEM), which
has also been employed for the forward analysis in solving the
inverse flaw quantification problems [8–11]. BEM transforms the
governing equations of elasticity into a boundary integral equation
and solves the problem using Green’s function. Nonetheless, if the
flaw boundaries are arbitrarily shaped, calculation of the Green’s
function within a heterogeneous solid becomes quite difficult, lim-
iting the use of BEM. Other modeling techniques are the spectral
element method [12–14] and the strip element method [15], which
have been occasionally used, but they are only confined to simple
structures and flaw configurations. Only recently, a new numerical
approach called the extended finite element method (XFEM) was
proposed to model problems with strong/weak discontinuities
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[16,17]. XFEM provides an attractive alternative to standard FEM in
that it does not require fine spatial resolution in the vicinity of dis-
continuities nor does it require repeated re-meshing to properly
address propagation of cracks or detection of flaws in such inverse
problems.

From an inverse optimization aspect, one can usually consider
two main categories of methods: gradient based algorithms and
heuristic algorithms which do not require gradients to evolve the
parameters. Gradient methods, such as Newton-type methods,
have the advantage of fast convergence to a solution provided that
the initial guess is close enough to the solution. Nevertheless, in
such inverse problems it is hard to determine a suitable initial
guess and these methods may converge to a local minimum which
is not the optimal solution. Another drawback of gradient methods
is that one needs to know the number of optimization variables
(flaw parameters in our case) beforehand. However, since the num-
ber of flaws is unknown to begin with, gradients cannot easily be
defined and some adaptive procedure is required which makes
the application of such methods difficult [4]. Heuristic algorithms
such as genetic algorithms (GA) and other evolutionary methods
may alleviate the limitations of gradient based methods and have
widely been adopted for flaw detection problems [11]. These
methods can easily be integrated into existing codes and offer
powerful global search capabilities [6,8,9,13]. Nonetheless, these
methods are also limited in that they converge much slower than
gradient based methods and if the number of optimization vari-
ables is large, significant computational power is required to
evolve these methods in a reasonable time. To this end, several
researchers have proposed to combine heuristic algorithms with
gradient based methods to obtain fast convergence to a global
minimum [15].

Recently, Rabinovich et al. [18,19] proposed a new numerical
technique based on XFEM and GA for crack identification in a flat
linear membrane using time-harmonic responses. This scheme
takes advantage of XFEM that alleviates the remeshing burden in
each forward analysis of the optimization process. The later work
by Waisman et al. [20] extended this XFEM-GA approach to quan-
tify various types of flaws such as straight cracks, circular holes,
and irregular-shape holes. This technique is further improved by
Chatzi et al. [21] by proposing a generic parametric enrichment
function (i.e., using ellipses) which is utilized to detect any type
of flaws (cracks or holes) of any shape. Jung et al. [22,23] per-
formed a study on the identification of a scatterer embedded in
an elastic heterogeneous media using dynamic XFEM, where the
inverse problem is casted as a minimization problem whereby
the unknown shape parameters of the scatterer are updated by a
gradient-based search algorithm. Nanthakumar et al. [24] extend-
ed the XFEM-based flaw detection scheme to piezoelectric struc-
tures using an ‘‘intermediate’’ optimization algorithm called the
multilevel coordinate search (MSC) method. While these XFEM-
based approaches only consider single flaw detection problems,
Sun et al. [25] proposed a topological variable-based enhanced
artificial bee colony (EABC) algorithm to quantify multiple flaws
by using XFEM as forward solver. This algorithm introduces topo-
logical variables into the search space as a part of optimization,
which is used to adaptively activate/deactivate flaws during the
run time until convergence is reached. Later on, Sun et al. [26] pro-
posed a novel multiscale algorithm based on XFEM for nondestruc-
tive detection of multiple flaws. The key idea of this approach is to
apply a two-step optimization scheme, where first rough flaw loca-
tions are quickly determined and then fine tuning is applied in the-
se localized subdomains to obtain global convergence to the true
flaws. Nanthakumar et al. [27] proposed an innovative method-
ology to detect multiple flaws in piezoelectric structures using
XFEM and topology optimization. This method used a combination
of classical shape derivative and the level-set method to minimize

the cost function. The void configuration does not require external
parameterization as it is implicitly represented by level sets. It is
effectively able to determine the number of voids and its corre-
sponding locations and shapes.

Up to date, most of the inverse problems formulated for flaw
quantification in literature are solved deterministically (even
though the search mechanisms of the heuristic algorithms, such
as GA, are stochastic, most of their results are reported determin-
istically), in which uncertainties from modeling errors, measure-
ment noise, and other influencing sources are not explicitly
considered. However, these uncertainties are unavoidable in prac-
tical flaw detection. Hence, probabilistic and statistical approaches
are sometimes more appropriate than deterministic approaches
since probability distributions can be used to quantify the various
uncertainties in this process. In particular, the Bayesian statistical
framework has been established and applied to structural system
identification by Beck and his colleagues [28–31], and then extend-
ed to various structural damage identification scenarios [7,14,32–
34]. One outstanding advantage of the Bayesian approach is that
engineering judgements or expert knowledge can be easily incor-
porated into the process as the prior information to reduce possible
uncertainties. In addition, rather than pinpointing a single solution
by deterministic approaches, the Bayesian approach can provide
the probability distribution of the unknown parameters, giving
both point and interval estimates. This is very important and useful
as pointed by Beck [35] ‘‘there are really no true values of the para-
meters to estimate because any chosen model gives only an
approximation of the real system behavior’’.

The aim of this work is to combine the Bayesian framework
with XFEM to provide a statistical approach for nondestructive
multi-flaw identification considering uncertainties from modeling
errors and measurement noise. Specially, a trans-dimensional
reversible jump Markov chain Monte Carlo (RJMCMC) method
[36] is employed to draw the posterior distributions of the flaw
parameters due to the missing knowledge of the number of flaws.
In addition, a pre-analysis procedure based on damage indices
defined at each sensor location is introduced to provide prior infor-
mation to guide the RJMCMC algorithm for better convergence. The
paper is structured as follows. Section 2 describes the main idea of
the trans-dimensional Bayesian approach for flaw detection and
quantification. In Section 3, a brief introduction of RJMCMC and
its application for quantification of the uncertain flaw parameters
are presented. The XFEM for forward analyses is described in Sec-
tion 4. To verify the proposed method, numerical examples with
increasing level of difficulty are illustrated in Section 5. Finally,
concluding remarks are given in Section 6.
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Fig. 1. A generic solid structure with traction-free void flaws.
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