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a b s t r a c t

In this paper, a temporal stabilized nodal integration method (sNIM) using 3-node triangular elements is
formulated for elastic-static, free vibration and buckling analyses of Reissner–Mindlin plates. Two stabi-
lization terms are added into the smoothed potential energy functional of the original nodal integration,
consisting of squared-residual of equilibrium equations. A gradient smoothing technique (GST) is used to
relax the continuity requirement of shape function. The smoothed Galerkin weak form is employed to
create discretized system equations, and the node-based smoothing domains are formed to perform
the smoothing operation and the numerical integration. A stabilization parameter is finally introduced
to the modified system for the sake of curing temporal instability. Numerical tests provide an empirical
value range of stabilization parameter, within which very accurate and stable results can be obtained for
both static and eigenvalue problems.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Plates are the most widely used structural components in civil,
mechanical and aerospace engineering. Static, free vibration and
buckling analyses of plate structures play an increasing important
role in their engineering applications. Due to the limitations of ana-
lytical methods, the finite element method (FEM) is still the most
powerful numerical tool to simulate behaviors of plates so far.

In the practical applications, lower order Reissner–Mindlin
plate elements are preferred due to their simplicity and efficiency.
They require only C0-continuity requirement for both translational
and rotational displacement fields. However, the development of
lower-order plate elements in the thin limit often suffer from the
shear-locking phenomenon due to incorrect transverse forces
under bending. To overcome this difficulty, a large amount of
efficient work have been done by researchers and various elements
have been proposed such as reducing integration [1] or selective
integration [2], discrete Kirchhoff triangular (DKT) elements
[3–5], Enhanced Assumed Strain (EAS) methods [6–8], Assumed
Natural Strain (ANS) methods [9–11] and discrete shear gap
(DSG) method [12]. All these methods are of great useful in reduc-
ing the shear-locking deficiency and increase the solution accuracy
to some extend.

On an other front of development of numerical methods, mesh-
free or meshless method has attract more and more scholars’
attention. Belytschko et al. [13] first proposed a so-called
Element Free Galerkin (EFG) method based on the moving least-
square (MLS) approximation, which laid foundations for the subse-
quent studies. Later, researchers extended the EFG for plate and
shell analyses [14,15] and very reasonable results were obtained.
Meshless local Petrov–Galerkin (MLPG) method [16–18] is another
attractive meshless method used in engineering analyses. Based on
MLPG, a large amount of works have been done by scholars
[19–21]. Unfortunately, the MLS shape function does not possess
the Kronecker delta function properties, thus various improve-
ments have been developed to overcome this deficiency. One of
the remarkable achievements is the point interpolation method
(PIM) [22] or radial point interpolation method (RPIM) [23,24], in
which the shape functions possess the Kronecker delta function
properties and the essential boundary conditions can be easily
imposed. Later, researchers successfully applied this method to
the static and dynamic [25–27], as well as the buckling analyses
of plates [28,29]. As one of the most influential meshfree methods,
Liu et al. [30–32] proposed a so-called reproducing kernel particle
method (RKPM) in 1995, which can be seen as a good reference of
our research in this work. The following extensive and in-depth
research based on RKPM can be found in JS Chen’s group
[33–35]. In their work, they put forward a stabilized conforming
nodal integration method, which lead the development of nodal
integration on meshless methods in the following years.
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In the effort to further advance finite element method (FEM),
Liu et al. have extended the concept of smoothing domains to for-
mulate a family of smoothed finite element method (SFEM)
[36,37]. Their work on SFEM combines the advantages of both
FEM and meshfree method, and is considered a worth investigating
for further study. Based on the concept of SFEM, researchers devel-
oped the so-called edge-based smoothed finite element method
(ES-FEM) [38–40] and node-based smoothed finite element
method (NS-FEM) [41,42]. The other works of plates and shell ana-
lyses using SFEM include those given in [43,44].

In the development of nodal integration, two types of
instability, spatial instability and temporal instability, have been
found. Through the smoothing operation, the spatial instability
can be successfully eliminated, while the temporal instability is
still an open issue so far. A spatially stable model always produces
a unique and convergent solution for static problems when
functions are bounded. However, this does not guarantee a stable
solution for dynamic problems. In [45], Beissel and Belytschko
pointed out that the nodal integration suffers from spurious single
modes due to underintegration of the weak form, and treats it by
the addition to the potential energy functional of a stabilization
term which contains the square of the residual of the equilibrium
equation. Bonet and Kulasegaram [46] presented a least-squares
stabilization procedure to cure temporal instability of nodal inte-
gration in metal forming simulations. Based on these previous
works, Zhang and Liu [47] further developed a stabilization proce-
dure for NS-FEM, and then provided a recommended range for the
stabilization parameter.

In this work, the temporal stabilization nodal integration is
further extended to the analysis of Reissner–Mindlin plates.
Three-node triangle, which can be generated automatically for
complicated geometries, is chosen as the background cells. In order
to apply the squared-residual stabilization technique to the origi-
nal nodal integration using linear triangular elements, the gradient
smoothing technique (GST) is extended to the second order deriva-
tives, so that only the first order derivatives of the shape function
are needed in our formulation. The discretized system equations
are derived according to the smoothed Galerkin weakform. A stabi-
lization parameter is finally introduced to the further formed stiff-
ness matrix. Numerical tests provide an empirical value range of
stabilization parameter, within which very reasonable results can
be obtained for both elastic-static and eigenvalue problems.

2. Theoretical formulations

2.1. Basic equations for Reissner–Mindlin plate

In this section, the basic equations of Reissner–Mindlin plate
are briefed. Let us consider a plate under bending deformation.

The middle surface of the plate is chosen as the reference plane
that occupies a domain X � R2 as shown in Fig. 1. Let w and
hT ¼ ðhx; hyÞ be the transverse displacement and the rotations about
the x and y axes, respectively. Then the unknown vector of three
independent field variables at any point in the problem domain
can be given as

uT ¼ w hx hyf g ð1Þ

Let us assume that the material is homogeneous and isotropic
with Young’s modulus E and Poisson’s ratio m. The governing differ-
ential equations of the static Reissner–Mindlin plate are

r � DbjðhÞ þ vtGc ¼ 0 in X ð2aÞ
vtGr � cþ p ¼ 0 in X ð2bÞ
w ¼ �w; h ¼ �h on C ¼ Ct ð2cÞ

in which Db is the bending stiffness constitutive matrix, G is the
shear modulus, v ¼ 5=6 is the shear correction factor, t is the plate
thickness, p ¼ pðx; yÞ is a distributed load per unit area, j and c are
the bending and shear strains, respectively, defined by

j ¼ Lh; c ¼ rwþ b ð3Þ

where b ¼ ð hy �hx ÞT ; r ¼ ð@=@x; @=@yÞT is the gradient vector
and L is a differential operator matrix given by

L ¼
0 @=@x

�@=@y 0
�@=@x @=@y

2
64

3
75 ð4Þ

The standard Galerkin weakform of the static equilibrium equa-
tions for the Reissner–Mindlin plate can now be written asZ

X
djT DbjdXþ

Z
X

dcT DscdX�
Z

X
dwpdX ¼ 0 ð5Þ

in which, the bending stiffness constitutive matrix Db and the trans-
verse shear stiffness constitutive matrix Ds are defined as

Db ¼
Et3

12ð1� m2Þ

1 m 0
m 1 0
0 0 ð1� mÞ=2

2
64

3
75; Ds ¼ vtG

1 0
0 1

� �
ð6Þ

For the free vibration analysis of Reissner–Mindlin plates, the
standard Galerkin weakform can be derived from the dynamic
form of energy principleZ

X
djT DbjdXþ

Z
X

dcT DscdXþ
Z

X
duT m€udX ¼ 0 ð7Þ

in which, m is the matrix containing the mass density of the mate-
rial q and thickness t as

m ¼ diag½qt;qt3=12;qt3=12� ð8Þ

In the case of in-plane buckling analysis and assuming pre-
buckling stress r0, nonlinear strains appear and the weak form
can be written asZ

X
djT DbjdXþ

Z
X

dcT DscdXþ
Z

X
d1Ts1dX ¼ 0 ð9Þ

where 1 and s are defined as

1 ¼

w;x 0 0
w;y 0 0
0 hx;x 0
0 hx;y 0
0 0 hy;x

0 0 hy;y
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Fig. 1. 3-node triangular element and positive directions of the deflection and two
rotations.
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