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a b s t r a c t

Continuation methods have proved to be very powerful tools when solving large finite element problems.
However, implementation of these methods often require modifications to the standard finite element
method. As a finite element code is already very complex, we would like to implement the continuation
method as efficiently as possible. In this paper, we present a new implementation technique based on a
Schur complement approach for the Moore–Penrose continuation method. This method facilitates the
detection of bifurcation points and also enables branch following. Numerical examples will be presented
and analyzed using the proposed approach.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The finite element simulation of very large deformations of
hyperelastic materials is still a challenging problem. These
problems are generally driven by a loading parameter and it is
often observed that for some values of this parameter, the
solution varies extremely rapidly due to geometric and/or materi-
al non linearities, often leading to the break down of the solution
process.

The typical solution strategy is often based on Newton like
methods. The loading parameter is set to a given value, the
Jacobian matrix stemming from the finite element discretization
is constructed, the corresponding linear system is solved to correct
the solution and this is repeated until convergence. The loading
parameter is then somehow increased (‘‘by hand’’) and the process
is repeated until the total load has been imposed on the structure.
One crucial step in terms of computational cost is the solution of
the linear systems involving the Jacobian matrix. For moderate size
problems, an LU decomposition can be used but for very large
problems, problem specific preconditioned iterative solvers must
be designed and implemented.

In some situations, following the solution branch by increasing
heuristically the loading parameter becomes extremely difficult
and results in the divergence of the process. This is clearly the
case in the neighborhood of limit points or bifurcation points

where the Jacobian matrix becomes singular. Numerical continua-
tion methods have proved to be a very powerful tool when
dealing with these kinds of problems. They can be roughly divid-
ed into two main branches, predictor–corrector methods and
piecewise linear methods (see [2]). Both types of methods share
many common features and can be numerically implemented in
similar ways. However, predictor–corrector methods generally
perform best when high accuracy is needed and are thus fre-
quently used in practice. Many different continuation methods
exist (see for example [14,11,24,25]), but in this paper, only the
Moore–Penrose (also known as Gauss–Newton) continuation
method (see [2,13,12]), which is a predictor–corrector method,
will be considered.

Nonlinear structural analysis leads invariably to collapse and
buckling analysis [7,31]. Buckling is a mathematical instability
which is characterized by a sudden failure of the structure when
critical loads are reached. The value of these critical loads, which
are associated with bifurcation points, are quantities of interests
[29,21,30] and correspond to eigenvalues of the system.
Detecting such points and following the different solution
branches passed these critical loads are thus important and
useful to better understand the physical properties of the prob-
lem we are solving. The analysis of structural instabilities, which
includes the detection of bifurcation points, is generally based
on a continuation method (see [11,6,14,18,27,1,22,28]). The
implementation of the continuation method presented in this
paper will therefore offer an efficient and simpler approach for
these analyses.
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In the Moore–Penrose method, the loading parameter becomes
an additional unknown of the problem allowing a more precise
control of the deformation, increasing its speed whenever possible
and slowing it in some critical regions. This is done by modifying
the linear system in the Newton method to take care of the addi-
tional unknown. This therefore requires a potentially important
modification of an existing finite element code. In particular, new
iterative solvers must be implemented to solve these increased lin-
ear systems.

As many of these problems have thousands or even millions of
degrees of freedom, the continuation method should be imple-
mented as efficiently as possible in order to reduce the already
high computational cost. In order to achieve this goal, information
that has already been calculated for the finite element method
should be used whenever possible. This is precisely the main objec-
tive of this work. We will present a generalization of the Moore–
Penrose continuation method that uses only information already
available in a standard finite element code. In particular, all linear
systems that have to be solved are based on the classical Jacobian
matrix of the problem. Therefore, if an LU decomposition of this
matrix is available, it can be used directly and if a specific iterative
method was used, it can still be used without any modification to
follow the solution curve, detect bifurcations and possibly follow
various solution branches.

This paper thus presents a new implementation technique for
the Moore–Penrose continuation method when applied in a finite
element context. This new approach, which takes advantage of
information already available, also facilitates the detection of
bifurcation points. Section 2 briefly recalls the Moore–Penrose con-
tinuation method as well as the classical numerical implementa-
tion of this method. Section 3 is devoted to the details of the
new implementation technique. Section 4 explains how the
approach can be used to easily detect bifurcation points and finally,
Section 5 is devoted to the validation of the proposed algorithm. In
particular, a study of the classical elastic beam buckling problem
will be presented and analyzed.

2. Moore–Penrose continuation method

The finite element discretization of nonlinear elasticity prob-
lems leads to nonlinear problems of the form:

FðuÞ ¼ 0

where u consists of the degrees of freedom. In general, u is the dis-
placement field, but in the case of mixed formulations, u consists of
the degrees of freedom for the displacement and the pressure. In
most situations, a loading parameter k, corresponding to either
external forces or prescribed displacements or both, implicitly
drives the deformation. For highly nonlinear problems, applying
the desired loading will frequently cause a breakdown of the
numerical method used to solve this problem. Therefore it is stan-
dard practice to gradually increase the value of the parameter until
the desired loading, kmax, is attained. Typically, a Newton method is
used to solve the nonlinear system. The following steps are there-
fore repeated until convergence is achieved:

1. Given an initial estimate u0 and a fixed load k.
2. Solve the linear system:

F 0uðukÞdk
u ¼ FðukÞ:

3. Update the solution:

ukþ1 ¼ uk � dk
u:

where F 0u is the Jacobian matrix of F and dk
u is the correction vec-

tor. The loading parameter k is then increased by a certain

quantity and the process is repeated until the total load kmax

has been imposed. The increment in k is performed more or less
heuristically, depending on the convergence of the Newton
method. This is highly inefficient and may result in very small
increments or even divergence of the algorithm in the neighbor-
hood of turning points or bifurcation points on the solution
curve.

A more efficient approach is to use continuation methods where
the loading parameter k is explicitly introduced in the system of
nonlinear equations which is now expressed as:

Fðu; kÞ ¼ FðxÞ ¼ 0 ð1Þ

with F a smooth function of RNþ1 into RN . The major difference is
that the vector of unknowns, x, now consists of the displacement
plus the loading parameter. Starting from a point xðiÞ 2 RNþ1 satisfy-
ing FðxðiÞÞ ¼ 0, and given a vector v ðiÞ tangent to the solution curve at
this point, the goal is to follow the curve up to the point where
k ¼ kmax. It is then natural to try to follow the solution curve by first
making a prediction step of length hi in the tangential direction:

X0 ¼ xðiÞ þ hiv ðiÞ ð2Þ

As X0 is not likely to be a solution of Eq. (1), the Newton method can
be used to obtain the next point xðiþ1Þ 2 RNþ1 on the solution curve.

By linearizing Eq. (1) around the prediction point X0 ¼ ½u0 k0�>, we
can solve:

F 0uðX
0Þdu þ F 0kðX

0Þdk ¼ FðX0Þ

which leads to a rectangular linear system of the form:

AðX0Þdx ¼ FðX0Þ ð3Þ

with AðX0Þ ¼ ½F 0uðX
0Þ F 0kðX

0Þ� a rectangular matrix of dimension
n� ðnþ 1Þ and dx ¼ ½du dk�> a correction vector of dimension
ðnþ 1Þ � 1.

Assuming that the rows of AðX0Þ are linearly independent (i.e.
AðX0Þ has full rank), which is generally the case since F 0uðX

0Þ is
the Jacobian matrix of the standard finite element method and is
therefore invertible, solution of system (3) is given by:

dx ¼ AþðX0ÞFðX0Þ

where Aþ is the Moore–Penrose pseudoinverse of matrix A defined

by Aþ ¼ A>ðAA>Þ�1
. This therefore leads to the following generaliza-

tion of the Newton method, which is also called the Moore–Penrose
continuation method:

� X0 ¼ xðiÞ þ hv ðiÞ

� For k ¼ 0;1;2; . . . ; kmax

1. Calculate the Moore–Penrose correction:

dk
x ¼ AþðXkÞFðXkÞ ð4Þ

2. Update the solution vector:

Xkþ1 ¼ Xk � dk
x

3. If kFðXkÞk 6 eF and kXkþ1 � Xkk 6 ex, convergence attained:

xðiþ1Þ ¼ Xkþ1

We note that kmax represents the maximum number of iterations
allowed while eF and ex are the desired tolerances on F and x
respectively.

To obtain the correction dk
x in Eq. (4), the Moore–Penrose pseu-

doinverse Aþ of the matrix AðXkÞ ¼ ½F 0uðX
kÞ F 0kðX

kÞ� is needed. The
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