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a b s t r a c t

Signorini problems model phenomena in which a known or unknown portion of the boundary is sub-
jected to alternating Dirichlet and Neumann boundary conditions. In this paper, we apply the method
of fundamental solutions (MFS) for the solution of two-dimensional both direct and inverse Signorini
problems for the Laplace equation. In this meshless and integration-free method, the harmonic solution
representing the steady-state temperature or the electric potential is approximated by a linear combina-
tion of non-singular fundamental solutions with sources located outside the closure of the solution
domain. The unknown coefficients in this expansion, the points of separation of the Signorini boundary
conditions and possibly the unknown Signorini boundary (in the inverse problem) are determined by
imposing/collocating the boundary conditions which can be of Dirichlet, Neumann, Cauchy or Signorini
type. This results in a constrained minimization problem which is solved using the MATLAB� toolbox rou-
tine fmincon. Several numerical examples involving both direct and inverse problems are presented and
discussed in order to illustrate the accuracy and stability of the numerical method employed.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Signorini problems model phenomena in which on a known or
unknown portion of the boundary, Dirichlet and Neumann condi-
tions alternate in conjunction with certain inequality constraints
[4,8]. The problem is further complicated by the fact that the num-
ber and the location of the points where the change in the bound-
ary conditions occurs are unknown [28]. Typical applications occur
in beach percolation [1], contact problems in electropainting [2]
and free surface problems [12].

Since Signorini problems are free boundary value problems, the
interest lies primarily on the boundary of the domain of the prob-
lem under consideration. For this reason, it is natural to apply
boundary methods such as the boundary element method (BEM)
for their solution, see, e.g., [3,13,28–30]. In this paper, the problems
considered are posed for the Laplace equation in steady-state heat
conduction or electrostatics, but a similar formulation occurs for
the Lamé system in elasticity.

The method of fundamental solutions (MFS) is a meshfree
boundary method which, due to its simplicity and ease of use, is

suitable for the solution of problems in complex geometries. In
the potential field, the MFS uses the density of the non-singular
set of fundamental solutions of the Laplace equation in the set of
harmonic functions. As such, it represents the solution as a linear
combination of non-singular fundamental solutions with sources
located outside the closure of the solution domain. Although the
issue of choosing these fictitious locations may represent a draw-
back, recent studies, [7,20], have proposed variants of the MFS in
which the source points are allowed on the boundary of the solu-
tion domain itself. The MFS also generates ill-conditioned systems
of equations for the unknown coefficients but then, if required, reg-
ularization techniques can be employed, [19].

Prior to this study, the MFS has been applied to solve free
boundary problems [14,25] and direct Signorini potential problems
in both two and three dimensions [23,24], using the FORTRAN NAG
routine E04UPF [22]. The novelty of this paper is twofold. First, we
employ the MATLAB� [21] toolbox routine fmincon instead of the
NAG routine. Secondly, we investigate for the first time the appli-
cation of the MFS for solving inverse Signorini potential problems
in two dimensions. The MFS has, in recent years, been used exten-
sively for the solution of various types of inverse problems [17,18]
but this is, apparently, the first time it is being used for the solution
of inverse Signorini problems. In these inverse geometric problems
the Signorini contact boundary is also unknown and has to be
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determined from Cauchy noisy data measurements of both pri-
mary (temperature, potential) and secondary (heat flux, current)
variables on the remaining portion of the boundary of the solution
domain.

The paper is structured as follows. In Section 2 we describe how
the MFS is applied to direct Signorini problems and provide exten-
sive implementational details. The method is then applied to sev-
eral numerical examples from the literature. In Section 3 we
show that the proposed method may be naturally adapted to solve
inverse geometric Signorini problems related to non-destructive
control processes [5]. The method is then tested on two such prob-
lems for retrieving a circular and an elliptic inner boundary.
Finally, in Section 4 we provide some conclusions and ideas for
future work.

2. Direct Signorini problems

We consider the following problem for the steady-state heat
conduction given by the Laplace equation

Du ¼ 0 in X; ð1aÞ
for the temperature u subject to the Dirichlet boundary condition

u ¼ f 1 on C1; ð1bÞ
the Neumann heat flux boundary condition

@u
@n

¼ f 2 on C2; ð1cÞ

and the complementarity conditions on the known free boundary Cs

u ¼ g when
@u
@n

< h; on Cs; ð1dÞ

or

@u
@n

¼ h when u < g; on Cs; ð1eÞ

where n is the outward unit normal to the boundary,
@X ¼ C1 [ C2 [ Cs; C1 \ C2 ¼ C1 \ Cs ¼ C2 \ Cs ¼ ;, and g and h
are given functions.

A similarproblemcanoccur in electrostatics,whereudenotes the
electric potential. For the well-posedness and variational formula-
tion of such a direct Signorini problem see, e.g. [8,10]. Note that it
is often convenient to combine (1d) and (1e) in the form, [23],

u 6 g;
@u
@n

6 h; ðu� gÞ @u
@n

� h
� �

¼ 0 on Cs: ð2Þ

2.1. The method of fundamental solutions (MFS)

In the application of the MFS to the Signorini Problem (1), we
seek an approximation to the solution of Laplace’s Eq. (1a) as a lin-
ear combination of fundamental solutions of the form [9]

uNðc; n; xÞ ¼
XN
k¼1

ck Gðnk; xÞ; x 2 X; ð3Þ

where G is the fundamental solution of the Laplace equation, which
in two dimensions is given by

Gðn; xÞ ¼ � 1
2p

ln jn� xj: ð4Þ

We choose M1 collocation points xkð ÞM1
k¼1 on C1;M2 collocation

points xkð ÞM1þM2
k¼M1þ1 on C2 and Ms collocation points xkð ÞM1þM2þMs

k¼M1þM2þ1 on
Cs. We denote the total number of collocation points by

M ¼ M1 þM2 þMs. We also place N singularities ðnkÞNk¼1 2 R2 nX
spread uniformly on a pseudo-boundary @X0 similar to @X at a fixed

distance d from it in the direction of the outward normal. Clearly,
the distance d depends on how far we can harmonically extend
the solution u outside X and a few guidelines may be found in [27].

2.2. Implementational details

There are N unknowns, namely the coefficients ðckÞk¼1;N in (3),
which can be determined by imposing the boundary conditions
(1a–e).

This is achieved by using the MATLAB� routine fmincon which
finds the constrained minimum of a scalar nonlinear multivariate
function. This is in contrast to the previously used routine lsq-

nonlinwhich minimizes a sum of squares. The choice of fmincon
was made because of its ability to include both linear and nonlin-
ear constraints thus accommodating the constraints resulting from
the complementarity conditions (1d) and (1e).

In particular, the scalar function FðcÞ which is to be minimized
by the routine fmincon is defined as follows: We take

/jðcÞ¼

uNðc;n;xjÞ� f 1ðxjÞ; j¼1; . . . ; M1;

@uN
@n ðc;n;xjÞ� f 2ðxjÞ; j¼M1þ1; . . . ; M1þM2;

uNðc;n;xjÞ�gðxjÞ
� �

@uN
@n ðc;n;xjÞ�hðxjÞ

� �
; j¼M1þM2þ1; . . . ; M1þM2þMs;

8>>>>>><>>>>>>:
ð5Þ

where c ¼ c1; c2; . . . ; cNð Þ, and /ðcÞ ¼ /1ðcÞ;/2ðcÞ; . . . ;/MðcÞð Þ, and
define

FðcÞ ¼ jj/ðcÞjj22 ¼
XM
j¼1

/2
j ðcÞ: ð6Þ

In some instances, the minimization of the functional bFðcÞ ¼ jj/ðcÞjj
instead of (6) led to more rapid convergence.

Moreover, we have the 2Ms linear constraints

uNðc; n; xjÞ 6 gðxjÞ and
@uN

@n
ðc; n; xjÞ 6 hðxjÞ; j

¼ M1 þM2 þ 1; . . . ;M1 þM2 þMs; ð7Þ
which may be recast in the form

Ac 6 b; ð8Þ
where A is a 2Ms � N matrix and b is a 2Ms � 1 vector.

More specifically, if we define the two M � N matrices U and T
by

Ui;j ¼ Gðnj; xiÞ; Ti;j ¼ @G
@n

ðnj; xiÞ; i ¼ 1; . . . ;M; j ¼ 1; . . . ;N; ð9Þ

then the matrix A in (8) is given by

Ai;j ¼ UM1þM2þi;j; AMsþi;j ¼ TM1þM2þi;j; i ¼ 1; . . . ;Ms; j ¼ 1; . . . ;N:
ð10Þ

Finally, the vector b in (8) is given by

bi ¼ gðxiÞ; bMsþi ¼ hðxiÞ; i ¼ 1; . . . ;Ms: ð11Þ
In the case of inverse problems investigated in Section 3, the con-
straints (7) become nonlinear which the routine fmincon can
accommodate in the form

CðyÞ 6 0; ð12Þ
where C ¼ C1;C2; . . . ;C2Msð Þ in a 2Ms-function vector defined by

Cj ¼ uNðc; n; xM1þM2þjÞ � gðxM1þM2þjÞ;
CMsþj ¼ @uN

@n
ðc; n; xM1þM2þjÞ � hðxM1þM2þjÞ; j ¼ 1; . . . ;Ms;

and y is the vector of unknowns.
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