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a b s t r a c t

This paper presents an interior-point implementation method of the relaxed strain energy function to
model the stress distribution in membranes in the presence of wrinkles. The relaxed strain energy func-
tion is reformulated using the interior-point method. This formulation is proven to be quasi-convex with
respect to the deformation gradient. A set of governing equations for the membrane is developed in the
standard finite element format. The solution to this set of equations is obtained using the interior-point
method, and several numerical examples are presented for validation. The proposed method is shown to
converge and to be robust and efficient.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Membrane structures have a rich history and are widely used in
aerospace and structural engineering applications. A few examples
can be found in solar sails, airbags, atmospheric balloons and para-
chutes. These membranes have many advantages, including their
ability to take complex shapes and their low mass to surface ratio,
which is especially important in aerospace engineering. Although
membranes can carry tensile loads very well, they tend to wrinkle
under the slightest compressive load. It is important to be able to
predict the stress distribution in the membrane, taking into
account the possible presence of wrinkles, as this affects the load
carrying capabilities of a membrane.

Wrinkles in a structure are often of a much smaller scale than
the structure itself. In order to model these wrinkles the mesh size
in e.g. a finite element model needs to be smaller than the wrinkle
size, leading to high computational costs. A possible solution is to
model the wrinkles as a continuous in-plane contraction of the
membrane. The exact geometry of the wrinkles is lost by this pro-
cedure, however the stress field in the membrane is modeled accu-
rately, and the computational costs are reduced significantly. This
solution, known as the tension field theory, is widely used and was
first introduced by Wagner [1].

A few geometrically exact models for membrane wrinkling exist
in which the tension field theory method is not applied, yet the

information about the detailed wrinkling configuration is main-
tained. Puntel [2] gives an analytical solution for stretching a flat
membrane and an analysis of a point load on a pressurized sphere
is given in Vella [3]. Geometrically exact numerical models are pre-
sented in Flores et al. [4] and Weinberg et al. [5]. Capturing wrin-
kling geometry requires the mesh size in a finite element model to
be smaller than the wrinkling in the membrane which results in
high computational costs for very thin membranes [6]. Addition-
ally the detailed wrinkling geometry of the membrane often is of
small importance, therefore the tension field theory method is
used in most models for membranes.

The governing equations for the load carrying capabilities of a
membrane are presented in the tension field theory method [1].
It is assumed that the membrane has zero bending stiffness and
all compressive stresses are eliminated. This elimination is enabled
by the introduction of an in-plane contraction which carries zero
strain energy. Analytical solutions to these equations exist for a
few specific cases. Mansfield [7,8] presents solutions for the ten-
sion field of a rectangular strip under shear and an annular ring
under torsion loading. These solutions have been validated with
experiments and serve well for verification purposes.

Pipkin [9,10] in his work incorporates the tension field theory
into the theory of finite deformations as a special case of non-linear
elasticity. A modified stored energy function is developed by relax-
ing the strain energy function of the material to obtain a non-
decreasing and convex relaxed strain energy function.

Based on this work Steigmann [11] presents the tension field
theory in terms of two potential functions. Different membrane
states are derived and it is demonstrated that application of the
relaxed strain energy leads to stable solutions for the stress

http://dx.doi.org/10.1016/j.compstruc.2015.01.007
0045-7949/� 2015 Elsevier Ltd. All rights reserved.

⇑ Corresponding author. Tel.: +31 15 27 87308; fax: +31 15 27 85337.
E-mail addresses: rderooij@stanford.edu (R. de Rooij), M.M.Abdalla@tudelft.nl

(M.M. Abdalla).
URL: http://ae.tudelft.nl (R. de Rooij).

Computers and Structures 151 (2015) 30–41

Contents lists available at ScienceDirect

Computers and Structures

journal homepage: www.elsevier .com/locate/compstruc

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compstruc.2015.01.007&domain=pdf
http://dx.doi.org/10.1016/j.compstruc.2015.01.007
mailto:rderooij@stanford.edu
mailto:M.M.Abdalla@tudelft.nl
http://ae.tudelft.nl
http://dx.doi.org/10.1016/j.compstruc.2015.01.007
http://www.sciencedirect.com/science/journal/00457949
http://www.elsevier.com/locate/compstruc


distribution. The first numerical results based on the relaxed strain
energy function are also presented by Steigmann [12].

Several numerical methods in which the tension field theory
method is used have been developed over the years. In one class
of methods the projection technique of Akita et al. [13] is imple-
mented. Here the deformation of the membrane is split into a
strain carrying and zero-strain carrying part. This is realized by
projecting the zero-strain energy components out of the stiffness
matrix, which modifies the constitutive law. Jarasjarungkiat et al.
[14] have extended this method for use with orthotropic materials.

In a second class of numerical methods for modeling the tension
field in membranes the constitutive law is maintained, but the
deformation gradient is modified. Roddeman et al. [15] present
the theory and analysis for this modification in isotropic materials
while Schoop et al. [16] implement it using finite elements. Raible
et al. [17] and Epstein [18] extend the method to enable the mod-
eling of orthotropic and general anisotropic materials respectively.
Pagitz et al. [6] propose a new finite element that includes a rota-
tional degree of freedom to control the direction of the tension in
the membrane. The performance of this element is verified even
for the membrane regions close to slacking. Dynamics methods
to model tension fields are developed in Kang [19] and Miyazaka
[20]. An extension into non-linear material laws to account for
plasticity is presented by Mosler et al. [21] using a variational for-
mulation of the internal strain energy. The tension field theory
method is formulated using the relaxed strain energy function by
Pipkin [10], and an explicit parameterization of the wrinkling
strain tensor is applied. The convexity properties of the energy
functional are not preserved by this parameterization.

In this paper a new implementation of the relaxed strain energy
function by Pipkin [10] will be presented. Convexity properties of
the relaxation are preserved and exploited, and the final set of gov-
erning equations is presented in the standard finite element format.
For this purpose, a reformulation of the relaxed strain energy func-
tion will be derived for which the convexity properties yield a com-
putationally efficient method. The resulting reformulation will be a
constrained, convex optimization problem, which will be solved
using the interior-point method. With this implementation no
if-else statements are required in the proposed method, as they
are in many of available methods to distinguish between the three
possible states of a membrane: taut, wrinkled or slack.

The outline of the paper is as follows: the kinematics of mem-
branes is presented in Section 2, which is followed by the general
equilibrium conditions in Section 3. These general equilibrium
conditions lead to an unstable energy minimization, as shown in
Pipkin [10]. Therefore, a variational principle based on the relaxed
strain energy function is applied in Section 4 to obtain a stable set
of governing equations. The discretization of the membrane struc-
ture and the linearization of the equations is performed in Sec-
tion 5. The numerical implementation of the discretized
equations is discussed in Section 6. Several numerical results are
presented in Section 7 in which the proposed method is verified
and validated. The conclusions are presented in Section 8. In addi-
tion, two appendices have been attached for completion. The
mathematical conditions for quasi-convexity are presented in
Appendix A. These conditions are related to the relaxation of a
function in Appendix B, and a closed form expression of this
relaxation is derived.

2. Kinematics

Membranes are very thin shells and thus they have a low bend-
ing stiffness, which is neglected in the analysis of the tension field
in membranes; this causes the membrane to wrinkle under the
slightest compressive deformation. In tension field theory these

wrinkles are modeled as an in-plane contraction of the membrane,
meaning that all strains are membranal. As a result only in-plane
strains need to be considered in this section.

Consider the membrane in the reference/undeformed configu-
ration occupies a bounded plane with covariant basis vectors Aa

ða ¼ 1;2Þ. Note: Greek characters are used to denote the reference
configuration. The reference position of any material point can
then be given as r0 ¼ Aan

a, with na being the contravariant compo-
nents of the material point.

In the current/deformed configuration the membrane can
occupy the space normal to the reference configuration which is
described by the covariant basis vectors ai ði ¼ 1;2;3Þ. The current
position vector then becomes r ¼ aixi. Let Gab and gij be the metric
tensors in the reference and current configurations respectively:

Gab ¼ Aa � Ab ð1Þ
gij ¼ ai � aj ð2Þ

The deformation from the reference to the current configuration
is described by the deformation gradient F ¼ Fi

aAaai:

Fi
a ¼

@xi

@na ð3Þ

This shows that the components of F form a 3� 2 matrix, which
means F has a null space along the normal of the membrane. The
null space is spanned by the vectors u for which the pull back by
the deformation gradient equals zero: FT u ¼ 0.

The Green–Lagrange strain is a symmetric 2� 2 tensor defined
in the reference configuration:

E ¼ 1
2

FT F � I
� �

ð4Þ

In convected coordinates a material point in the current config-
uration is described by the same set of coordinates as in the refer-
ence configuration. The Green–Lagrange strain tensor in convected
coordinates is given as:

E ¼ 1
2

g � Gð Þ ð5Þ

Let u be the displacement vector of this material point, then:

ai ¼ Ai þ
@u
@ni
¼ Ai þ u;i; i ¼ 1;2 ð6Þ

The engineering strain in Voigt form then becomes:

e ¼
A1 � u;1

A2 � u;2

A1 � u;2 þ A2 � u;1

0
B@

1
CAþ 1

2

u;1 � u;1

u;2 � u;2

u;1 � u;2 þ u;2 � u;1

0
B@

1
CA ð7Þ

3. Equilibrium equations

Let /ðEÞ ¼ /ðEðFÞÞ ¼ wðFÞ be the strain energy function of the
material, which is assumed to be convex in E as is the case when
the stress–stain relation is one-to-one [22,10]. The first and second
Piola–Kirchhoff stress tensors are given in (8) and (9) respectively:

P ¼ Pa
i aabi Pa

i ¼
@w

@Fi
a

ð8Þ

S ¼ Sabaaab Sab ¼ @/
@Eab

ð9Þ

Because of symmetry in E, also S is symmetric. The relation
between P and S is given as:

Pa
i ¼ GijF

j
cSca ) P ¼ FS ð10Þ

The strong form of the equilibrium equations for any material
point in the membrane is given as:
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