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a b s t r a c t

Limit analysis is treated herein in the framework of mathematical programming introducing a convex
hull formulation for expressing the yield conditions in static and kinematic theorem. The proposed for-
mulation differs in the number of variables and yield constraints compared to the standard one, which
expresses yield condition as the intersection of halfspaces. The two formulations are compared in terms
of computational efficiency. Numerical results of plane steel frames prove the computational advantages
of convex hull formulation for both 2D and 3D stress resultant interaction and demonstrate the effect of
combined stresses on the load carrying capacity.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Plastic analysis can be performed either by a step-by-step
method following the succession of the inelastic structural
response at critical sections or directly via limit analysis tech-
niques. Step-by-step method is physically more informative pro-
viding the entire evolution until structural collapse, while the
ultimate state (which is of primal interest from engineering per-
spective) can be obtained almost instantaneously via limit analysis
methods. For linearized yield criteria and rigid-perfectly plastic
behavior, as well as hardening behavior with unbounded plastic
deformations, limit analysis can be cast as a Linear Programming
(LP) problem that still remains computationally advantageous.
The use of LP and its duality offer the supportive mathematical
structure for the two theorems of limit analysis, i.e. the static
(lower bound) theorem and the kinematic (upper bound) theorem.
The first approaches the true load factor from below for statically
admissible trials that satisfy equilibrium and yield conditions,
while the second determines an upper bound of the load factor
among kinematically admissible solutions that are stressed within
the yield limits [1,2].

Incorporation of Linear Programming into limit analysis was
introduced by Charnes and GreenBerg [3] for the ultimate state
analysis of trusses. A variety of alternative mathematical program-
ming procedures for limit analysis of discrete structures described
by piecewise linear (PWL) elastic-perfectly plastic constitutive
laws were formulated and compared with respect to their compu-
tational merit by Maier et al. [4]. An alternative yield approach
using the vertices of yield polyhedron was proposed by Zavelani

et al. in 1974. This approach, denoted as ‘‘vertex’’ or ‘‘corners’’ for-
mulation, was used for shakedown finite element analysis [5] and
plane limit analysis [6,7]. The effect of combined stresses on the
ultimate state of structures was further addressed by Polizzotto
[8] and generalized by Grierson and Aly [9]. Methods that improve
limit load estimation of rigid-perfectly plastic structures under the
effect of combined stresses were proposed by Tin-Loi [10,11] and
Ardito et al. [12]. The formulation was extended to address holo-
nomic and nonholomic behavior accounting also for hardening/
softening by Maier et al. [13–16] and Tangaramvong and Tin-Loi
[17,18]. Most of this development is based on a piecewise lineari-
zation of the convex yield surface that delimits the elastic domain
as an intersection of half-spaces determined by a number of hyper-
planes. More recently, methods for approximating the yield surface
with ellipsoids were proposed forming second-order cone pro-
gramming (SOCP) problems by Skordeli and Bisbos [19] and Bleyer
and Buhan [20].

In this work, yield polyhedron is expressed in the mathematical
context of convex hull and is compared to hyperplane (standard)
formulation. According to the latter, yield constraints are intro-
duced into the problem through the equations of the linear seg-
ments/hyperplanes that are used for the approximation of the
nonlinear yield surface. Convex hull formulation, on the other
hand, expresses the yield condition in the form of a linear combi-
nation of all vertices that define the linearized yield surface. The
two expressions of yielding lead to the corresponding primal and
dual problems that differ in number of variables and yield con-
straints. The primal formulations are used and compared in terms
of computational efficiency for limit analysis of plane frames, while
the effect of combined stresses is also examined.

The organization of the paper is as follows. First, the governing
relations of the static and kinematic theorem of limit analysis,
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namely equilibrium, yield conditions and compatibility relations,
are presented for plane frames. Yielding is established in two alter-
native ways, i.e. using the equations of linear segments/planes and
a convex hull formulation. Then, the static and kinematic theorems
of limit analysis are formulated as primal- dual LP problems using
both expressions for yield conditions. Moreover, two interaction
cases for stress resultants are considered, namely axial force-bend-
ing moment (NM) and axial-shear force-bending moment (NQM)
interaction. Finally, numerical examples for 2D steel frames are
presented that illustrate the effect of combined stresses on the
maximum load factor and the yielding pattern. These are further
used to compare the two formulations of the yield surface in terms
of their computational efficiency.

2. Basic assumptions

Plane frames are considered herein consisting of prismatic ele-
ments subjected only to nodal loading for simplicity reasons.
Moreover, small displacements are assumed to establish equilib-
rium equations at the initial undeformed configuration. In addi-
tion, plastic behavior, if present, is considered only at preselected
critical sections, i.e. the end sections of the elements, whereas
the remaining parts behave elastically. Yield conditions are appro-
priately linearized and the behavior of all critical sections is con-
sidered rigid-perfectly plastic.

Matrix notation is adopted throughout. Matrices are repre-
sented by capital bold-face letters, while vectors by lowercase bold
characters.

3. Equilibrium

Each plane beam element develops six stress resultants at its
ends, as shown in Fig. 1. Herein, the axial force (si

1), bending
moment at the start node j (si

2) and bending moment at the end
node k (si

3), are considered as independent primary actions for
member i [18]. Thus the six end actions of the element can be
expressed at the global axes system in terms of the local basic
actions by using the corresponding equilibrium matrix as follows:
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where F j
x; F

j
y;M

j are the global X and global Y forces and bending

moment at the start node and Fk
x ; F

k
y;M

k are the actions at the end

node of the element i at the global system, xi is the angle formed
rotating the global X-axis counterclockwise to meet the local x-axis

and Li is the element length, Bi is the (6 � 3) equilibrium matrix of
the element and si is the (3 � 1) stress vector of the element.

The equilibrium for the whole structure is then established in
terms of the unknown vector of stresses of all members as:

B � s ¼ a � f þ f d ð2Þ

where B is the (nf � 3nel) structural equilibrium matrix, assembled by
the corresponding element equilibrium matrices arranged in a block
diagonal manner, s is a (3nel � 1) vector of all stresses in local systems,
a is a scalar load factor, f the (nf � 1) vector of nodal loading in the glo-
bal system, f d is the (nf � 1) fixed nodal load vector, nel denotes the
number of elements and nf the number of degrees of freedom.

4. Yield condition for multi-component interaction

4.1. Hyperplane equations – standard formulation

The nonlinear yield criterion is a priori linearized forming a
polyhedron to facilitate expressing the yield condition as a set of
linear constraints. The elastic domain is denoted by the common
space of all halfspaces in the form [21]:

sdjaT � sd 6 rd
� �

ð3Þ

where a is the unit normal vector of the hyperplane, sd is the vector
of normalized stresses and rd determines the offset of the hyper-
plane from the origin.

Yield condition is defined in this section as a set of a finite num-
ber of linear inequalities, which geometrically represent the inter-
section of a finite number of halfspaces and hyperplanes.

In general, considering the interaction of d number of stress
resultants (d-component interaction) and the yield surface of
dimension d is approximated with h hyperplanes, the yield condi-
tion for all critical sections of the whole frame is formed in terms of
stresses s as:

NT � s 6 r ð4Þ

where N is the (3nel � 2hnel) matrix of all scaled -with respect to
yield capacities of stresses-normal vectors and r is the (2hnel � 1)
vector that includes the yield limits of all yield lines [2]. Relation
(4) is analyzed in detail for 2D (axial force-bending moment) and
3D (axial-shear force-bending moment) interaction in Sections 7.2
And 7.3 respectively.

4.2. Convex hull formulation

4.2.1. Mathematical considerations
The convex hull of a set of points or vertices is the domain

within and on the envelope formed by the outer vertices. Mathe-
matically a set C is convex if the line segment between any two
points in C lies in C, i.e., if for any x1, x2 2 C and any h with
0 6 h 6 1, h�x1 + (1 � h)�x2 2 C. Furthermore, a point of the form
h1 � x1 þ . . .þ hn � xn, where h1 þ . . .þ hn ¼ 1 and hi P 0, i ¼ 1 . . . n,
is a convex combination of the points-vertices x1; . . . ; xn [21].

The convex hull of a set of points C (Fig 2a), denoted by conv C,
is the set of all convex combinations of points in C:

conv C ¼ h1x1 þ � � � þ hnxnjxi 2 C; hi P 0; i ¼ 1; . . . ;n;f
h1 þ � � � þ hn ¼ 1g ð5Þ

where hi are nonnegative coefficients and x1; . . . ; xn are the points-
vertices. The convex hull or convex envelope of set C is the smallest
convex set that contains C [21].Fig. 1. Frame element i with equilibrated stress resultants-end actions.

116 M.M.S. Manola, V.K. Koumousis / Computers and Structures 151 (2015) 115–129



Download English Version:

https://daneshyari.com/en/article/6924539

Download Persian Version:

https://daneshyari.com/article/6924539

Daneshyari.com

https://daneshyari.com/en/article/6924539
https://daneshyari.com/article/6924539
https://daneshyari.com

