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a b s t r a c t

In dual sequential methods for structural and topology optimization, approximations based on diagonal
quadratic Taylor series expansion methods are frequently used to construct tractable sub-problems.
However, when approximating the second-order terms, some inconsistent enforcements are usually
employed to ensure the convexity of the approximations (Groenwold et al. (2010)), which may cause
convergence problems in the optimization process. In this paper, an adaptive quadratic approximation
(AQA) is proposed to improve robustness and convergence performance of the optimization process.
Numerical results on representative structural and topology optimization problems show the efficiency
of the new proposed method over other existing algorithms.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Approximation schemes are typically used in structural and
topology optimization problems, wherein the objective and the
constraint functions are approximated using appropriate schemes
at design points to construct an approximated sub-problem, which
is then solved using suitable optimization methods. Thus, the ori-
ginal difficult problem at each optimization step is replaced by a
tractable fast-to-compute approximated sub-problem. Since Sch-
mit [2–4] first introduced the approximation concept in structural
optimization in the late 1970s, extensive work has been done in
the area of developing high quality approximated sub-problems.
In early structural optimization studies [4–6], sub-problems were
created wherein the constraints were approximated using the
first-order Taylor series expansion in reciprocal variables since
such approximations can appropriately capture the behavior of
constraints. Fleury et.al [7] presented an approximation scheme
wherein first-order Taylor series expansion in both direct and reci-
procal variables are used to create a sub-problem. This method
yields a sub-problem that is convex and separable and can be effi-
ciently solved by dual methods [8,9]. This idea directly led to the
convex linearization (CONLIN) scheme [10], which is demonstrated
to be a successful algorithm in solving structural optimization
problems. The approximations in direct and reciprocal variables
are first order local approximations and are valid in a relatively
small vicinity near the design point at which the approximation

is carried out. Such approximations, by their construction, are
not very accurate away from the expansion point. All approxima-
tions of this kind are categorized into local approximation by Bar-
thelemy and Haftka [11].

To obtain better approximation, multi-point information can be
used to construct reliable mid-range approximations that are valid
in a relatively larger region near the expansion point. Haftka [12]
introduced modified reciprocal approximation and two-point pro-
jection method by enforcing derivative information at current and
previous design points. By linearizing the exponential intervening
variable, Fadel [13] proposed a two-point exponential approxima-
tion in which the exponent is calculated by matching the approx-
imate and exact function derivatives at two different design points.
To relax the conservatism in the CONLIN method and using the
previous point information, Svanberg [14] combined the modified
reciprocal approximation and CONLIN to develop the Method of
Moving Asymptotes (MMA). The moving asymptotes can adjust
the conservatism of MMA approximations by judging the oscilla-
tion behavior of the current and previous design points, so that
the approximation becomes adaptive and more efficient than
CONLIN.

The above methods have been shown to be successful in lot of
applications, but they are all first-order and monotonous schemes,
and therefore are not suitable to approximate non-monotonous
structural behaviors. Indeed, it is shown that these methods have
poor convergence properties or even fail to converge for some par-
ticular problems [15,16]. The limitation of first-order approxima-
tion is also discussed by Fleury et al. [9], and in the same study a
second order approximation based on Taylor series expansion is
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shown to achieve the best compromise between conservativeness
and accuracy. Besides using the fully populated Hessian matrix to
construct the approximation, Fleury [17] showed that approxima-
tion formulated by using only a diagonal Hessian is a more effec-
tive way that is amenable to convex programming without much
accuracy loss by comparing with the sequential quadratic pro-
gramming (SQP) method. Intervening variables can also be
extended to second-order approximation, and the two point adap-
tive nonlinear approximations (TANA) schemes are of this type
[18,19]. TANA schemes add second-order correction term to expo-
nential approximation and are demonstrated to be effective for
optimizing truss problems. Similarly, a globally convergent MMA
(GCMMA) algorithm is presented by Svanberg [15,20] in which a
second-order term is added to the MMA approximation. To adjust
the second-order term, an additional inner loop is used in GCMMA
which increases the computational effort as compared to MMA.
Furthermore, to approximate the second-order term in GCMMA,
Bruyneel and Fleury [16,21] presented a family of MMA approxi-
mations and proposed a selection scheme for different conditions.
More recently based on the concept of using diagonal Hessian
approximation, Groenwold et al. [22] proposed a family of diagonal
quadratic approximations (DQA) based on reciprocal and exponen-
tial approximations. Also if dual methods are to be used, which are
efficient for large scale topology optimization problems, DQA can
always give the primal–dual relationship in a closed form, while
TANA and GCMMA approximations are not amenable to dual
methods as additional numerical analysis is required to construct
the dual sub-problem. The detailed application of DQA on struc-
tural and topology optimization problems is provided in the recent
studies by Groenwold et al. [1,23,24].

When solving large-scale structural/topology optimization
problems, the computation and storage of fully populated Hessian
becomes expensive; therefore, another benefit gained from using
a diagonal Hessian approximation is that the algorithm is computa-
tionally efficient. Furthermore, ignoring the off-diagonal entries of
Hessian makes an approximation separable, and then dual method
can be easily used with such approximations [17]. Hence, the sub-
problems based on the DQA approximations can be solved effi-
ciently by dual method to get the new starting design point for
the next iteration. This process continues sequentially until a con-
vergence criteria is satisfied, so it is also called dual method based
on sequential approximation (DSA) [25]. Although DQA proposed
by Groenwold [22] are quite suitable for DSA framework, they are
not problem-free approximations. In order to satisfy the convexity
and separability requirements of DSA algorithm, some spurious
enforcements in the DQA have been proposed [1]. These enforce-
ments ensure convexity of approximation where the derivative is
greater than zero by sacrificing the approximation accuracy and this
drawback is illustrated in Fig. 1. Under this enforcement, when the
gradient at a current design point xk

i is positive (where k is the iter-
ation number), the reciprocal or exponential approximation
becomes concave so the second derivative information they yield
becomes negative and, therefore the direct approximation without
any enforcement is concave. In this case, the enforced convex
approximation is constructed by changing the sign of derivatives
[1]; however, this is inaccurate and the enforced approximation
cannot represent the true behavior of the actual function anymore,
and the optimal point of the enforced approximation xkþ1

i is differ-
ent from the actual optimal value x�i , as shown in Fig. 1. Thus,
although DQA family proposed by Groenwold [22] yields non-
monotonous approximations, the approximation may not be accu-
rate under certain conditions, and this may eventually result in slow
convergence. Alternatively, if these enforcements are relaxed or
improved by an adaptive approximation, the approximation accu-
racy will increase and this will finally speed up the convergence.

In this paper, an adaptive quadratic approximation (AQA)
approach is proposed based on the DQA to overcome the difficul-
ties mentioned above by selecting proper approximations adap-
tively instead of direct enforcements. The AQA approximation is
shown to yield better results for structural and topology optimiza-
tion problems than the enforced DQA methods. The representative
test problems included in this paper are: truss optimization prob-
lems, Fleury’s weight like optimization problem, and topology
optimization for minimum compliance and compliant mechanisms
design.

The paper is arranged as follows: In Section 2, the outline of DSA
algorithm is provided. Then the various monotonous and non-
monotonous approximations together with their advantages and
restrictions are discussed in Section 3. In order to address the
restrictions described in Section 3, a new adaptive quadratic
approximation (AQA) scheme is proposed in Section 4. Perfor-
mance evaluation of the new proposed algorithm is carried out
by the comparison of various algorithms via numerical experi-
ments in Section 5. Finally, the important concluding remarks are
offered in Section 6.

2. Dual sequential approximation (DSA) algorithm

2.1. Nonlinear optimization problem

The primal structural/topology optimization problem can be
described as:

min
x2D

f 0ðxÞ

Subject to :

f jðxÞ 6 0; j ¼ 1;2; . . . ;m

D ¼ fxijxli 6 xi 6 xuig; i ¼ 1;2; . . . ;n

ð1Þ

where x 2D � Rn is the design variable; f 0ðxÞ is the objective func-
tion which to be minimized; f jðxÞ are the inequality constraints, and

xli and xui are the upper and lower boundaries of the ith design var-
iable xi, respectively. In most cases, f 0ðxÞ and f jðxÞ represent the lin-
ear or nonlinear responses of a structure, typically total weight,
displacement at certain nodes, and stiffness or compliance of a
structural system, and are assumed to be at least once continuously
differentiable. In structural optimization problems, the design vari-
ables typically represent area of cross section or any other geomet-
ric property of structural members while in topology optimization

Enforced 
Approximation 
(Convex) 

Actual Function 
Direct 
Approximation 
(Concave)

∗0

Current Expanding 
Point  (“+” Gradient) 

Fig. 1. Illustration of enforcement for positive gradient.
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