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a b s t r a c t

In this paper an adaptive multilevel mesh refinement method, coupled with the Zienkiewicz and Zhu a
posteriori error estimator, is applied to solid mechanics with the objective of conduct reliable nonlinear
studies in acceptable computational times and memory space. Our automatic approach is first verified on
linear behaviour, on 2D and 3D simulations. Then a nonlinear material behaviour is studied. Advantages
and limitations of the local defect correction method in solid mechanics problems in terms of refinement
ratio, error level, CPU time and memory space are discussed. This kind of resolution is also compared to a
global h-adaptive resolution.

� 2014 Civil-Comp Ltd and Elsevier Ltd. All rights reserved.

1. Introduction

Adaptive refinement methods (e.g. [1–5]) are devoted to solve
problems with various characteristics length-scale in acceptable
computational times and memory space. The aim of this paper is
to deal with problems having local discontinuities. Among the
refinement methods available, those inducing small elements
(h-refinement method [1,6] for example) are more efficient to
simulate local discontinuities than those increasing the order of
the polynomial basis (p-refinement method [2,7] for example).
Moreover the pollution error [8,9] (i.e. the residual error due to
the non-refined part of the problem) depends on the mesh size
and may be controlled by refining the element size but not by
modifying the order of the polynomial basis. That is the reason
why we decided to use adaptive mesh refinement (AMR) tech-
niques. One of the constraints of the study was to use an existing
industrial solver, that means to change only pre-processing and
post-processing operations. Thus, we chose to use local multi-grid
methods [4] consisting in generating local sub-grids with finer and
finer discretisation step. Furthermore, it induces simple meshes
(uniform, structured and regular). As we study elliptic problems
discretised by the finite element (FE) method, it is interesting to
use structured regular meshes for the reason that it produces
well-defined problems. The local defect correction (LDC) [10,4]

method was retained because it is not specific to flux conservative
problems.

The refinement process is piloted thanks to the well-known
Zienkiewicz and Zhu (ZZ) a posteriori error estimator [11] founded
on stress smoothing.

This paper is based upon Barbié et al. [12] but the current
version includes results obtained from additional research on the
efficiency of the coupled LDC-ZZ method for linear behaviour
(see also [13]), a further study on three-dimensional test case
where different initial meshes are compared and an extended work
concerning the nonlinear test case, particularly with the use of
refinement ratio greater than 2.

2. Adaptive mesh refinement approach

2.1. Local defect correction method

The local defect correction (LDC) method was introduced by
Hackbusch [10]. Its convergence was also proved by Hackbusch
[14]. It is based on the multi-grid process [15]. A global coarse grid
is used on the whole domain, and only local fine sub-grids are set
on areas where more precision is required. An example of nested
grids is shown on Fig. 1. The local fine grid lies on a zone of interest
defined on the coarse grid. Such type of local sub-grid can be
defined recursively until reaching the desired accuracy.
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Prolongation and restriction operators are defined to link sev-
eral levels of computation. Coarse and fine problems are then
sequentially computed until the solution converges on the coarser
grid. Such an iterative process is traditionally represented by a
^-cycle, as on Fig. 2.

2.1.1. Problem definition
Let us consider the problem ðPÞ defined on an open domain X of

boundary C :

ðPÞ :
LðuÞ ¼ f in X

B:C: on C

�
ð1Þ

with:

L : usually nonlinear operator
u : solution
f : right-hand member
B:C: : boundary conditions

8>>><
>>>:
A set of nested domains Xl;0 6 l 6 l�, with X0 ¼ X and l� the num-
ber of levels, is then defined. Each domain is discretised by a grid Gl

of boundary Cl. The space step hl of the mesh Gl is defined by
hl ¼ hl�1=r ¼ h0=rl with r the refinement ratio. The local discrete
problem on each grid Gl at iteration k writes:

ðPk
l Þ :

Llðuk
l Þ ¼ f k

l in Gl

appropriate B:C: on Cl

(
ð2Þ

where Ll is the discrete operator associated to LjXl
on Gl and

f 0
l ¼ f jGl

.
The boundary conditions will be specified during the prolonga-

tion step while the right-hand member f k
l will be defined during

the restriction step.

2.1.2. Prolongation step: boundary conditions
As recommended by [13], at the prolongation step the problem

(Pk
l ) is solved with f k

l ¼ f k�1
l .

On the coarsest grid G0, the boundary conditions of the whole
problem are applied.

The boundary conditions on the other grids Gl;1 6 l 6 l� are
represented on Fig. 3:

� If Cl \ C – £, the boundary conditions of the original problem
(P) are used.
� On the other part of the boundary, Dirichlet boundary condi-

tions are applied. A projection operator Pl
l�1 applied on the next

coarser solution uk
l�1 enables us to obtain the Dirichlet values.

2.1.3. Restriction step: defect correction
At the restriction step, the boundary conditions defined on the

prolongation step are kept to solve the problem ðPk
l Þ. For each grid

level l;0 6 l 6 l� � 1, the restriction step consists in correcting the
right-hand side of the problem ðPk

l Þ via a defect calculated from
the next finer solution uk

lþ1.
Two sets of nodes of Gl have to be defined, see Fig. 4. Al contains

the nodes of the grid Gl strictly included on the domain discretised
by Glþ1. Ål is made up of the interior nodes of Al (in the sense of the
discretisation scheme).

First, the solution of the problem (Pk
lþ1) is restricted to the nodes

of Al :

~uk
l ðxÞ ¼ ðR

l
lþ1uk

lþ1ÞðxÞ 8x 2 Al ð3Þ

Coarse grid

Zone of interest

Fine grid

Fig. 1. Example of nested meshes used in LDC method.
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Fig. 2. Representation of LDC process: ^-cycles.
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Fig. 3. Prolongation step: boundary conditions on Gl (l – 0).

Fig. 4. Restriction zone Al on the left and correction zone A�l on the right (e.g. for
operator D).
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