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a b s t r a c t

A procedure for the definition of uncoupled warping modes within the framework of a higher order beam
model is presented. An approximation of the displacement field over the cross-section by a set of linearly
independent basis functions is considered in the models formulation so as to capture 3D structural
phenomena. By considering the cross-section in-plane rigid, a linear eigenvalue problem stemming from
the models governing equations is derived, allowing to retrieve classic solutions and to derive a set of
hierarchical warping modes. Numerical examples are presented in order to verify the ability of the model
to simulate the warping of thin-walled structures.

� 2014 Civil-Comp Ltd and Elsevier Ltd. All rights reserved.

1. Introduction

The structural analysis of thin-walled prismatic structures
through one-dimensional models requires the consideration of
higher order deformation modes in order to accurately represent
its three dimensional structural behaviour. In fact, being those
models derived by reducing the three-dimensional elasticity equa-
tions to a set of equations defined along the member axis by an
appropriate projection of the displacement field, the definition of
a convenient set of basis functions is essential to capture the 3D
structural behaviour.

The warping of thin-walled structures with open cross-sections
was considered by [1] through the definition of an additional coor-
dinate for the approximation of the displacement field, the so-
called sectorial coordinate. The cross-section was assumed to be
in-plane undeformable and the shear deformation of the middle
surface was neglected. A theory for the non-uniform torsion of
closed cross-section was derived in [2,3], considering the shear
strain of the cross-section midline to be given by the Saint-Venant
uniform torsion theory. A more accurate theory for the non-uni-
form torsion of closed thin-walled beams was derived in [4,5] by
considering an additional term representing the cross-section
warping, which has an amplitude variable along the beam axis that
is not related with the cross-section angle of torsion; reference
should be made that this approach was also considered in [1] for
solid sections. This theory is established and known as Benscoter
theory, [6]. The cross-section ‘‘classic’’ warping is made orthogonal

to the flexural modes by considering an adequate position for mea-
suring the sectorial coordinate that defines the warping function,
which is similar to consider the beam flexure around the principal
axes in order to uncouple the axial force and bending moments.

A general theory for the analysis of thin-walled beams applied
to a cross-section either with an open, closed or branched midline
profile was presented in [7–9]. The theory relies on the assumption
of the Vlassov hypothesis, considering only the shear strain corre-
sponding to the theory of torsion by Saint-Venant for closed
cross-section, [3]. The displacement field is approximated in terms
of the derivative of its tangential components along the beam axis,
being the axial displacements obtained through the hypothesis of
neglecting the membrane shear strain, corresponding to a proce-
dure already adopted by [10]. However, an orthogonality criterion
similar to the classic warping was not possible to derive; instead,
an uncoupling procedure based on an attempt do diagonalize the
beam governing equations through generalised eigenvalue prob-
lems was adopted. A development of thin-walled beam models
to the analysis of bridge structures considering warping modes
was presented in [11–13], considering some of the formulations
reported in [14] that follow the seminal work of [7–9,15].

The generalised beam theory (GBT) developed by [16,17] allows
the definition of the cross-section deformation field through a
cross-section discretization in terms of axial displacements, obtain-
ing the transverse displacement by neglecting the shear strain. GBT
was extended so as to consider (i) the shear-lag effect by adopting a
set of shear-lag warping modes, [15,18], and (ii) the application to
cross-sections with a generic midline profile geometry; recall that
the initial formulation of GBT was developed for open cross-sec-
tions. Recently, further developments of the theory were made,
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allowing its application to cross-sections with an open, closed or
branched geometry, [19–22]. Regarding the uncoupling between
deformation modes, the theory considers the diagonalization of
the beam governing equations as a criteria, adopting towards this
end a set of justified generalised eigenvalues problems.

Several other beam formulations accounting for the warping of
thin-walled structures have been developed. Although, some of
them were developed towards the application to specific structural
behaviours, it is worth to mention some of the respective concepts.

A thin-walled beam formulation for anisotropic materials con-
sidering the out of plane warping of beam cross-sections but assum-
ing its in-plane rigidity was presented by [23]. In that formulation, a
set of orthogonal functions for the shear dependent warping of thin-
walled beams was derived, being defined the corresponding weak
form of the equilibrium equations. A set of orthogonal warping
functions, defining the so-called eigenwarpings, were obtained from
the solution of a generalised eigenvalue problem associated with
the equilibrium differential equations. An ‘‘improved Bernoulli
model’’ and an ‘‘improved Saint-Venant model’’ have been defined
by adding to the Bernoulli model (linear axial displacement) and
to the Saint-Venant model (linear axial stress distribution) a series
expansion of these eigenwarpings.

The warping of thin-walled beams was also taken in account in
[24] by considering an approximation of the thin-walled axial dis-
placement field through a linear combination of basis functions
only dependent of the cross-section coordinate. The basis functions
are considered to be orthogonal to the uniform and linear functions
associated with the translation and rotation of the cross-section.
Comparatively to the model of [23], the formulation of [24] derives
the system of governing equations from the assumptions made on
the complete description of the displacement field, whereas in [23]
the solution of warping is obtained separately for a specific dis-
placement interpolation.

A thin-walled beam model applicable to cross-sections with
both open and closed midline profiles, considering the cross-section
in-plane rigid but including the membrane shear deformation, was
presented in [25]. A shear flexible element considering warping was
presented by [26], being the model applicable to thin-walled beams
with an open profile of an arbitrary geometry. In terms of kinemat-
ics, the formulation considers the axial displacements of the cross-
section to be defined through the linear combination of the axial
displacement of the centroid, the cross-section rotations due to
the flexure and the warping function defined through the sectorial
coordinate. A finite element is derived considering the approxima-
tion of the displacement, rotation and warping through linear, qua-
dratic and cubic functions, respectively.

A formulation for the analysis of thin-walled rectangular hol-
lowed cross-sections subjected to torsion is developed in [27] in
the sequel of a previous work, [28]. A set of orthogonal basis func-
tions is adopted for the axial displacement of the cross-section
webs, being the displacement of the flanges obtained from compat-
ibility requirements. An equilibrium equation governing the warp-
ing of the walls is established in terms of the basis functions
coordinates, which is proven to be independent of the angle of
twist. On the other hand, an equation similar to the non-uniform
torsion theory is derived, being the angle of twist coupled with
the warping functions parameters.

A procedure for the definition of warping functions was pre-
sented in[29–32] within the framework of a beam model formula-
tion. The beam model considers a division of the cross-section into
rectilinear elements, being adopted a linear variation of the dis-
placements along each wall element. The axial displacements are
obtained adding to the Bernoulli displacements a linear combina-
tion of these additional warpings.

A thin-walled beam model that assumes the cross-section in-
plane rigid but considers the out-of-plane warping and the ‘‘mem-

brane’’ shear deformation is presented in this paper. The classic
equations are retrieved side by side with a set of governing equa-
tions representing higher order deformations. In a previous work
by the authors, [33], the warping modes were obtained from the
solution of the quadratic eigenvalue problem associated with the
differential equations of the beam model. In the sequel of a work
presented by the authors in [34], an efficient, simple and innova-
tive procedure for the definition of higher order warping modes
is herein presented, being verified that these modes allow to accu-
rately represent the higher order warping of in-plane deformable
cross-sections. Towards the definition of orthogonal warping
modes, the higher order beam model differential equations are
rewritten in terms of axial displacements by considering the
cross-section in-plane rigid, allowing to obtain a set of uncoupled
warping modes directly from the corresponding linear symmetric
eigenvalue problem. These modes are uncoupled according to bi-
orthogonality conditions associated with linear symmetric eigen-
value problems, which allow to separate the structural phenomena
of thin-walled structures. A comparison with the results of a higher
order beam theory proposed by [35], which identifies similar
warping modes but for an in-plane deformable cross-section, was
successfully performed.

2. Model formulation

A one dimensional model for the analysis of thin-walled beams
in order to consider the corresponding out-of-plane warping is
developed. The formulation considers the cross-section to be in-
plane rigid and includes the corresponding shear deformation.
Towards an efficient approximation of the displacement field, the
cross-section is divided into laminar elements, being the displace-
ment field approximated for each element along the corresponding
middle surface (see Fig. 1).

2.1. Displacement field

The displacement field is defined admitting the beam cross-sec-
tion to be ‘‘divided’’ into n laminar elements without any geometri-
cal restriction, i.e., it is possible to deal with more than two walls
converging in a node as well as to consider two consecutive aligned
walls. The displacement components are defined through a set of
interpolation functions independently of the corresponding direc-
tion. A local reference frame Oðx; s;nÞ is adopted, being the beam
longitudinal axis represented by x, whereas n represents the per-
pendicular direction relatively to the wall and s the running coordi-
nate along the cross-section midline profile. The middle surface is
therefore defined by the cartesian pair ðx; sÞ. A cross-section discret-
ization is represented in Fig. 2.

The structural behaviour of the thin-walled beam is reduced
to the cross-section midline profile considering only the corre-
sponding membrane behaviour inasmuch as the cross-section
in-plane deformation is disregarded and hence the plate behav-
iour of the wall is neglected. The displacement field is defined
as follows:

uxðx; s;nÞ ¼ ~uxðx; sÞ ¼ Uux and usðx; s;nÞ ¼ ~usðx; sÞ ¼ Wus ð1Þ

where U and W represent the arrays grouping the corresponding
interpolation functions, being ~ux and ~us the respective amplitudes.
A set of p and m linear independent approximation functions is
considered:

U ¼ /1; . . . ;/p

� �
and W ¼ w1; . . . ;wm½ � ð2Þ

being the respective amplitudes given by:

ux ¼ ux1; . . . ;uxp
� �t and us ¼ us1; . . . ;usm½ �t ð3Þ
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