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a b s t r a c t

A computationally efficient beam finite element is presented for the static and dynamic analysis of frame
structures with any number and location of concentrated damages, whose macroscopic effects are sim-
ulated with a set of longitudinal, rotational and transversal elastic springs at the position of each singu-
larity. The proposed mathematical model exploits positive Dirac’s deltas in the corresponding flexibility
functions of the beam elements, and allows also considering shear deformations and rotatory inertia.
Such contributions may have a huge impact on the higher modes of vibration, as confirmed by the
numerical examples.

� 2014 Civil-Comp Ltd and Elsevier Ltd. All rights reserved.

1. Introduction

Presence of damages in frame structures may substantially
change their static and dynamic response, reducing the perfor-
mance and eventually leading to failure. Broadly speaking, the
approaches available in the literature to model cracks and other
forms of concentrated damage in beams and columns can be clas-
sified into three main categories: local stiffness reduction (LSR),
discrete spring (DS) equivalent models, and more sophisticated
formulations adopting methods and concepts of Fracture Mechan-
ics [1].

The LSR is conceptually the simplest approach to build a finite
element (FE) model of a damaged beam, as it just requires to mesh
the member with a sufficient number of beam elements and to
reduce the relevant stiffness component (e.g. the flexural stiffness)
of the element at the position where the damage occurs (see
Fig. 1(a)) [2–4]. To be efficient, this approach requires a fine mesh,
and the problem arises of quantifying the stiffness reduction in
each FE to match the global effects of the actual concentrated
damage.

In the DS model, on the contrary, the beam is ideally divided at
the position of the damage into two regions; the new elements so
obtained are articulated at this location and, depending on the
characteristics of the damage, the residual stiffness is simulated

by axial, and/or rotational and/or shear springs. For slender beams
in bending, for instance, the presence of cracks affects mainly the
flexural stiffness EI, and therefore the DS model just consists of
joining the adjacent split elements of the beam with a hinge (i.e.
axial and shear flexibility are not considered), which are then cou-
pled with a rotational spring, whose stiffness is related to the
intensity of the damage (see Fig. 1(b)): that is, the severer the dam-
age, the softer is the spring. In the limiting case in which the cross
section is fully damaged, the stiffness of the spring becomes zero.
The main shortcoming with the DS model is that, if a conventional
beam element is used, two additional FE nodes must be placed at
the location of each concentrated damage, i.e. one node on each
side. This could be particularly cumbersome if the DS model is used
for the purposes of damage identification, as it would also require
re-meshing the beam during the identification process.

Alternatively, the use of 2D or 3D FE models may produce very
detailed and accurate results, but such computationally intensive
approaches are more appropriate to tackle problems of crack initi-
ation and/or propagation, while global analysis of framed struc-
tures and damage detection in beams and columns can be
carried out by less sophisticated FE models. As a matter of fact,
the DS model often provides the best trade-off between accuracy
and computational effort for these applications.

Motivated by these considerations, many formulations have
been developed for the DS model, including the ‘‘rigidity model-
ling’’ by Biondi and Caddemi [5,6], in which the singularities in
the flexural stiffness, corresponding to concentrated damages, are
introduced as negative impulses (i.e. Dirac’s delta functions with
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negative sign). Although expedient, this mathematical representa-
tion is not consistent with the definite-positive nature of the flex-
ural stiffness, delivering however exact closed-form solutions for
the static analysis of multi-cracked slender beams in bending.
Aimed at overcoming this theoretical flaw, Palmeri and Cicirello
[7] have recently presented a (physically consistent) dual repre-
sentation of cracks, i.e. a ‘‘flexibility modelling’’, in which Dirac’s
delta functions with a positive sign are introduced in the bending
flexibility of the beam, i.e. the inverse of its flexural stiffness; they
also extended the model to cope with Timoshenko beams, to take
into account the contribution of the shear deformations in the
uncracked regions of the member. A rigorous theoretical justifica-
tion of this flexibility modelling has been subsequently presented
in Ref. [8].

The DS model has been extensively studied and applied within
different schemes of structural health monitoring, aimed at identi-
fying presence, location and severity of concentrated damage in
frame structures (e.g. Refs. [9–13]), and the papers cited in the lit-
erature review of [14]. In this context, the size of the FE assembly
for the structural frame under investigation plays an important
role, as ideally it should be as small as possible. Indeed, the vast
majority of the identification algorithms proceed iteratively until
convergence, and therefore any little saving in the computational
cost for a single analysis may result in a significant advantage on
the whole process. Moreover traditional damage detection
approaches may require FE re-meshing throughout the identifica-
tion process, which inevitably causes an additional increase in
the computational effort.

Aimed at addressing these issues, an analytical and numerical
study has been carried out to develop an efficient two-node
multi-damaged beam (MDB) element for the FE analysis of frame
structures, which is able to account for any number and location
of concentrated damages without increasing the size of the prob-
lem in comparison with the corresponding undamaged structure.
It is worth mentioning here that within the present study, any
localised increase in the flexibility of the beam is considered as a
concentrated damage, provided that the portion of the beam
affected by such increase is less than its cross sectional dimensions.

Similar approaches have been recently pursued by other
authors, whose studies differ in the analytical formulations
adopted to get the closed-form expressions for stiffness matrix,
load vector and mass matrix. In the FE proposed by Skrinar
[15,16], cubic splines are used to represent the field of transverse
displacements in each uncracked region of the beam, while the
additional kinematic and static unknowns arising at each crack
have been eliminated with the help of compatibility and equilib-
rium equations combined with the Hooke’s law for the rotational
springs simulating the cracks. However, this study has only consid-
ered slender Euler–Bernoulli beams in bending and masses lumped
at the two nodes of the resulting FE, which may limit its
applicability.

The formulation proposed by Caddemi et al. [17] is more gen-
eral, as it includes the shear deformations (i.e. the Timoshenko
beam theory has been adopted), and rotational and transverse
springs are considered at the position of each crack. They have
employed the rigidity modelling of concentrated damage to derive
the exact closed-form expressions for the deformed shape of the
two-node multi-cracked beam element subjected to unitary nodal

settlements, which in turn have been used to derive the stiffness
matrix and consistent mass matrix. Differently from this formula-
tion, the proposed work includes the axial damage in the MDB ele-
ment, so that it is possible to consider for each concentrated
damage a set of axial, rotational and shear springs, i.e. the beam
is fully articulated at the position where the concentrated damage
occurs, allowing relative longitudinal, rotational and transverse
movements (this is particularly important in the dynamic analysis
of structures in which both axial and transversal deformations
affects the modes of vibrations, as for instance in camshaft
[18,19]. The proposed formulation can also be useful when a con-
centrated increase in the flexibility of the structural member
comes from an internal joint, e.g. a beam-to-beam connection in
a steel frame, rather than from a proper damage.

This paper extends the preliminary work by Donà et al. [20]
with the inclusion of the rotatory inertia, which results in lowering
the vibrational frequencies, particularly the higher ones, and there-
fore can be critical in the accurate identification of position and
severity of the damages [21,22]. Furthermore, when the material
has a relatively high ratio of bending to shear modulus, e.g. wood,
the effects of shear deformations and rotatory inertia may become
negligible even for slender beam [23]. In order to facilitate the
practical implementation of the proposed MDB element, the
closed-form expressions for stiffness matrix (see Appendix A)
and consistent mass matrix (see Appendix B) are also provided.

The paper clearly demonstrates the improved efficiency of the
proposed two-node MDB element with respect to the LSR model
as well as the effects of the inclusion of both shear deformations
and rotatory inertia. To do this, the results of static analyses are
validated against those provided by the commercial FE code
SAP2000 [24]. It is shown that, independently of the number of
concentrated damages, the proposed MDB element is able to deli-
ver, for both Euler–Bernoulli and Timoshenko kinematic models,
the same exact solutions with just a single FE for each beam and
column in the frame structure, while the LSR model only gives
an approximate solution (whose accuracy depends on the size of
the mesh) and SAP2000 needs an additional node at the position
of each damage. Both lumped and consistent mass matrices have
been also tested for the modal analyses. It is shown that using
lumped masses with the proposed MDB element allows recovering
the same eigenproperties given by SAP2000, provided that the
same mesh is adopted; besides, using the consistent mass matrix
increases the accuracy, as the eigenproperties so obtained con-
verge more rapidly to the exact solution, with the additional
advantage that the FE mesh is independent of the position of the
concentrated damages.

2. Exact closed-form solutions for beams with multiple
concentrated damages under axial and transverse loads

Aimed at defining the shape functions for the proposed MDB
element, the flexibility modelling recently proposed by Palmeri
and Cicirello [7] for a concentrated flexural damage (i.e. a crack-
induced lumped rotation) has been extended to include axial and
shear lumped deformations at the position of the concentrated
damage, and has been then used to derive the exact closed-form
solutions for MDBs subjected to both axial and transverse loads.

(a) LSR (b) DS

Fig. 1. The bending stiffness EI for the LSR (a) and DS (b) models.
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