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a b s t r a c t

A rotationless formulation of flexible multibody dynamics in terms of natural coordinates is considered.
Since natural coordinates do not comprise rotational parameters, the consistent formulation and numer-
ical discretization of actuating torques becomes an issue. In particular, the straightforward time discret-
ization of the forces conjugate to natural coordinates may lead to a significant violation of the balance law
for angular momentum. The present work shows that the theory of Cosserat points paves the way for the
consistent incorporation and discretization of actuating torques. The newly proposed method adds to the
energy–momentum consistent numerical integration of flexible multibody dynamics.

� 2012 Civil-Comp Ltd and Elsevier Ltd. All rights reserved.

1. Introduction

The present work deals with a rotationless description of flexi-
ble multibody dynamics that circumvents the use of rotational
parameters (Betsch et al. [1,2]). The present approach relies on
the canonical embedding of the rotation group into a nine-
dimensional linear space. Accordingly, the orientation of a rigid
body in space is characterized by nine direction cosines which
define a director triad fixed at the rigid body and moving with it
(Betsch and Steinmann [3]). The nine direction cosines play the
role of redundant coordinates subject to six independent con-
straints enforcing the orthonormality of the director triad.

A similar approach can be applied to Cosserat solids such as
shear deformable beams and shells. In Betsch and Steinmann
[4,5] and Betsch and Sänger [6] the rotationless formulation and
numerical discretization of geometrically exact Cosserat beams
and shells is treated. The advantages of Cosserat solids for the
description of flexible multibody systems are emphasized as well
in the works by Géradin and Cardona [7], Ibrahimbegović and
Mamouri [8], and Bauchau [9].

In this connection, structure-preserving time-stepping methods
such as energy–momentum schemes are considered important due
to their enhanced numerical stability and robustness, see Géradin
and Cardona [7, Chapter 12], Ibrahimbegović et al. [10], Bathe

[11], and Bauchau [9, Chapter 17]. It is worth noting that the
rotationless formulation of flexible multibody dynamics makes
possible the straightforward design of structure-preserving time-
stepping schemes such as energy–momentum schemes and
momentum-symplectic integrators (Leyendecker et al. [12] and
Betsch et al. [13]).

On the other hand the nonstandard rotationless description of ri-
gid bodies and Cosserat solids requires some care concerning the
consistent application of actuating torques. The present rigid body
formulation falls into the framework of natural coordinates which
have a long tradition in multibody system dynamics (see Garcı́a
de Jalón [14] and the references cited therein). By definition, natural
coordinates are comprised of Cartesian components of unit vectors
and Cartesian coordinates. It is worth noting that our specific choice
of natural coordinates (Betsch and Steinmann [3]) has its roots in
theoretical mechanics (Saletan and Cromer [15, Chapter 5]).

Using natural coordinates, the application of external torques
becomes an issue since conjugate rotational parameters are not
available. One way to resolve this issue is the introduction of addi-
tional coordinates which are appended to the natural coordinates
via specific algebraic constraints (Garcı́a de Jalón [14] and Uhlar
and Betsch [16]).

Alternatively, the redundant forces conjugate to the natural
coordinates can be used to take into account the action of external
torques. In the present work we focus on this approach. We show
that the straightforward time discretization of the forces conjugate
to natural coordinates may lead to a significant violation of the
balance law for angular momentum. To remedy the situation we
recast the rotationless formulation of rigid bodies in terms of skew
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coordinates. This approach paves the way for the consistent time
discretization of the equations of motion. It is worth noting that
our newly proposed method has been guided by the close connec-
tion between natural coordinates and the theory of Cosserat points
(Rubin [17]).

An outline of the rest of the paper is as follows. In Section 2 the
equations of motion providing the framework for the present
description of flexible multibody systems are summarized. The for-
mulation of rigid body dynamics in terms of natural coordinates is
dealt with in Section 3. The extension of the present approach to
multibody dynamics is illustrated in Section 4 with the formula-
tion of lower kinematic pairs. After a summary of the main features
of the present approach in Section 5, the structure-preserving dis-
cretization in time is dealt with in Section 6. To demonstrate the
capability of the proposed method two numerical examples are
presented in Section 7. Eventually, conclusions are drawn in
Section 8.

2. Equations of motion

We start with the equations of motion pertaining to a finite-
dimensional mechanical system subject to holonomic constraints.
From the outset we confine ourselves to mechanical systems
whose kinetic energy can be written as

Tð _qÞ ¼ 1
2

_q �M _q ð1Þ

Here, q 2 Rn is the vector of redundant coordinates and a super-
posed dot denotes the derivative with respect to time. Moreover
M 2 Rn�n is a constant mass matrix. As has been outlined in the
Introduction a constant mass matrix is a consequence of the use
of natural coordinates for the description of spatial multibody sys-
tems. The equations of motion pertaining to the discrete mechanical
systems of interest can be written in variational form

Gd ¼ dq � M€qþ
Xm

l¼1

klrglðqÞ � F

 !
¼ 0 ð2Þ

which has to be satisfied for arbitrary dq 2 Rn. The last equation has
to be supplemented with algebraic constraint equations gl(q) = 0,
1 6 l 6m. The associated constraint forces assume the formP

klrglðqÞ, where kl are Lagrange multipliers. The last term in (2)
accounts for external forcing. For simplicity of exposition we do
not distinguish between forces that can be derived from potentials
and nonpotential forces. Note, however, that we may replace F 2 Rn

in (2) with

F ! F �rUðqÞ ð3Þ

Then, the potential forces are derived from a potential function
U(q), and the nonpotential forces are contained in F. Due to the
presence of algebraic constraints the equations of motion assume
the form of differential–algebraic equations (DAEs). The configura-
tion space of the constrained mechanical systems under consider-
ation is defined by

Q ¼ fq 2 RnjglðqÞ ¼ 0; 1 6 l 6 mg ð4Þ

Throughout this work we assume that the constraints are indepen-
dent. Consequently, the vectors rglðqÞ 2 Rn are linearly indepen-
dent for q 2 Q. Due to the presence of m geometric constraints the
discrete mechanical system under consideration has n �m degrees
of freedom. Admissible variations dq have to belong to the tangent
space to Q at q 2 Q given by

TqQ ¼ fv 2 RnjrglðqÞ � v ¼ 0; 1 6 l 6 mg ð5Þ

Remark 2.1. The variational form (2) of the equations of motion is
equivalent to Lagrange’s equations (of the first kind), which may be
linked to the Lagrange-d’Alembert principle

d
Z tN

t0

Tð _qÞ �
Xm

l¼1

klglðqÞ
 !

dt þ
Z tN

t0

dq � F dt ¼ 0 ð6Þ

The Lagrange-d’Alembert principle can be viewed as an extension of
Hamilton’s principle to account for external forcing, see Marsden
and Ratiu [18].

Remark 2.2. In the above description F 2 Rn is loosely termed
‘external force vector’. In a multibody system formulated in terms
of natural coordinates each individual component of F refers to a
specific rigid body (see Section 3 for further details) or a specific
node of the finite element discretization of a flexible beam or shell
component. Thus the action of joint-forces can be represented by
components of F, although joint-forces are internal forces (or tor-
ques) from the multibody system perspective. If the external force
components are to represent joint-forces Newton’s third (or
action-reaction) law has to be obeyed.

3. Rigid body dynamics in terms of skew coordinates

We next present a reformulation of the rotationless formulation
of rigid body dynamics (Betsch and Steinmann [3] and Saletan and
Cromer [15, Chapter 5]). The original version of the rotationless
formulation relies on the assumption of an orthonormal director
frame. The orthonormality of the director frame is related to the ri-
gid body assumption and enforced by algebraic constraints. How-
ever, the direct discretization of the DAEs typically relaxes the
constraints to discrete points in time (see Section 6). Correspond-
ingly, in the discrete setting the orthonormality of the director
frame is confined to discrete (or nodal) points in time. This implies
that convex combinations of the nodal directors in the discrete set-
ting represent base vectors that are in general neither of unit
length nor mutually orthogonal. This deficiency (or more specifi-
cally, the discretization error) can be taken into account by intro-
ducing skew coordinates from the outset. In particular, the use of
skew coordinates turns out to be beneficial to the formulation
and consistent numerical discretization of external torques.

In the following we use convected coordinates hi to label a
material point belonging to the rigid body (Fig. 1). The position
of a material point at time t can be described by

Fig. 1. Planar sketch of the rigid body.
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