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a b s t r a c t

Explicit integration is often used in highly nonlinear finite element structural dynamics simulations.
However, explicit time integration is stable only if the used time-step is smaller than a critical threshold,
which can be shown to depend on the smallest geometrical dimension of the finite elements in the mesh.
This aspect is particularly critical when solid-shell elements are used for the analysis of thin walled struc-
tures, since the small thickness can lead to unacceptably small time-steps. A selective mass scaling tech-
nique, based on a linear transformation of the element degrees of freedom, is proposed in this paper to
increase the size of the critical time-step without affecting the dynamic response. An analytical procedure
is also developed for the computation of the element highest eigenfrequency and estimate of the critical
time-step size. The computational effectiveness and accuracy of the proposed methodology is tested on
the basis of numerical examples.

� 2012 Civil-Comp Ltd and Elsevier Ltd. All rights reserved.

1. Introduction

Thin walled structures appear in many important engineering
applications. For effective and accurate computations, structures
of this type are mostly analyzed using shell finite elements,
belonging to either one of two main categories: shell elements de-
rived on the basis of the classical or degenerate shell concepts (see
[1]), in conjunction with the assumption of plane stress state (see
e.g. [2–4]); solid-shell elements, directly derived from three-
dimensional continuum elements, not using rotational degrees of
freedom and allowing for the implementation of fully three-
dimensional constitutive laws (see, e.g. [5–7]).

In recent times, solid-shell elements have been studied more
and more intensively, since they are claimed to present several
advantages over classical shell elements. Common arguments used
in the literature in favor of this statement are: more straightfor-
ward enforcement of boundary conditions, possibility to incorpo-
rate complex 3D material models, no need for complex update
algorithms for finite rotations (event though recent advancements,
such as the rotation vector parametrization proposed e.g. in Ref. [8]
have greatly reduced the complexity of the problem), easy usage in
combination with 3D solid elements, possibility to obtain good
accuracy in the through-the-thickness stress distribution in lami-
nated composites, thanks to direct modeling of thickness strains.
On the other hand, low-order continuum elements, from which

solid-shell elements are usually derived, exhibit several types of
locking behavior which, however, can now be controlled adopting
assumed strain and/or enhanced strain corrections of the element
kinematics. This aspect will not be considered in this paper and the
reader is referred to the recent literature on the subject (see, e.g.
[9–12] and references therein).

Despite these recent achievements in solid-shell formulations, the
fact that the thickness dimension is always significantly smaller than
the in-plane dimensions unavoidably leads to a high ratio of trans-
verse to in-plane normal stiffnesses, with a high finite element max-
imum eigenfrequency and, hence, stiffness matrix ill-conditioning.
These inherent difficulties are particularly relevant when iterative
solvers are used in implicit formulations or when explicit time inte-
gration is employed in dynamic analyses. Explicit integration is usu-
ally adopted in wave propagation problems. However, even though
implicit integration is the most natural approach in the case of inertia
dominated problems, because of convergence difficulties which may
occur in highly nonlinear problems (such as, e.g. in contact prob-
lems), explicit integration is often preferred also in this case.

The present contribution is focused on explicit central differ-
ence approaches, which are only conditionally stable. In the un-
damped case, a stable time-step must satisfy the condition

Dt 6
2

xmax
ð1Þ

where xmax is the maximum eigenfrequency of the assembled
mesh. One can also show that

xmax 6 xe
max ð2Þ
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where xe
max is the highest eigenfrequency of an individual element

in the mesh. A physical interpretation of the stability limit can be
obtained from the Courant, Friedrichs and Lewy condition which
prescribes that the time-step must be smaller than the time re-
quired by a dilatational stress wave to traverse the smallest element
of the mesh

Dt 6
Le

c
; c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ 2l

q

s
ð3Þ

where Le is the element smallest geometric dimension (element
characteristic length), k and l are Lame’s constants, q is the mass
density and c is the wave propagation speed. The ratio Le/c will be
henceforth referred to as ‘‘element traversal time’’.

Two provisions have been recently proposed to circumvent the
problem of solid-shell ill conditioning: thickness scaling and mass
scaling. In the first case [13–15], the stiffness matrix is modified
so as to improve its conditioning. In this case the scaling has either
to be closely incorporated into the shell formulation, or it is ob-
tained through multiplication by a preconditioner, which is compu-
tationally not effective in explicit analyses. In the second case, the
mass matrix is modified, so as to reduce the speed of dilatational
stress waves traveling through the shell and hence increase the crit-
ical time-step in explicit dynamics. In the present contribution a
selective mass scaling technique for explicit dynamics analyses
employing solid-shell elements is proposed and assessed on the
basis of numerical tests.

The simplest mass scaling technique consists of an artificial uni-
form increase of the material density, which affects in the same
way all structural eigenmodes, and therefore leads to unacceptable
inaccuracies in most cases. More accurate approaches can be pur-
sued considering that individual finite elements contribute to the
lowest structural eigenmodes mainly with the inertia associated
to their rigid body modes. In inertia dominated problems, better
results can then be obtained by selectively scaling element masses,
in such a way that masses associated to element rigid body modes
are not modified. A theoretically motivated scaling, which satisfies
this requisite, can be obtained by summing to the mass matrix the
stiffness matrix multiplied by a scaling parameter [16,17]. This
scaling can be shown to selectively reduce the highest structural
eigenfrequencies, with little or zero modifications of the lowest
ones. The price to pay is that, after the scaling, the originally
lumped mass matrix becomes non-diagonal. The discretization of
complex structures generally leads to non-uniform meshes, with
fine meshes often localized in small regions, which govern the
time-step size for the whole system. In this cases, the scaling can
be applied to relatively small patches of elements and the non-
diagonal mass matrix can be effectively solved for the nodal accel-
erations using an iterative scheme [18]. In the general case of thin
walled structures, however, the uniform small thickness is the
dominant geometric factor and the scaling should be applied to
the whole mesh, leading to excessive computational costs when
the mass matrix has to be inverted in explicit approaches. Other
mass scaling techniques are discussed in Hetherington and Askes
[19], and Askes et al. [20], all leading to non-diagonal mass
matrices.

To avoid loosing the mass matrix diagonal structure, degrees of
freedom governing the element rigid body modes should be isolated
and the scaling applied to the remaining degrees of freedom only.
This is the concept at the basis of the scaling technique usually
adopted in classical shell elements [21]. Since the element rigid body
modes are governed by the middle plane degrees of freedom, the
idea is to increase the masses associated to rotational degrees of
freedom only. In solid-shell elements, only displacement degrees
of freedom are used, and the technique cannot be used in a straight-
forward way. The technique discussed in this paper is then based on

a linear transformation of the degrees of freedom, which allows to
selectively apply the mass scaling while preserving the mass lump-
ing. It is shown how this can be accomplished in a simple and com-
putationally inexpensive way, so that the time-step size turns out to
be governed by the element in-plane dimensions only (element in-
plane traversal time), independent of the element thickness.

After the mass scaling is carried out, one needs to accurately
compute (or to bound from below) the critical time-step. This
can be obtained by estimating the maximum eigenfrequency of
each finite element in the mesh. Gershgorin’s theorem [22] is
widely used to compute an upper bound to such an eigenfrequen-
cy. However, when selective mass scaling is applied, the bound
turns out to be overly large, leading to too small time-steps. For
eight-node hexaedron with constant strains (one integration point)
and uniform density, Flanagan and Belytschko [23] provided closed
form expressions for bounding the maximum eigenfrequency both
in undistorted and distorted element shapes. The critical time-step
can also be obtained as the time required by a dilatational stress
wave to traverse the smallest element dimension which, for so-
lid-shell elements, is always the thickness. When the element is
distorted, the characteristic length can be estimated from below
on the basis of geometric considerations [24], but this technique
can hardly be used in a consistent way in conjunction with selec-
tive mass scaling. Alternatively, xe

max can be found solving analyt-
ically the eigenvalue problem. Besides the solutions provided in
Flanagan and Belytschko [23], Ling and Cherukuri [25] provided
analytical solutions for plane stress and strain four and eight-node
quadrilaterals. Comini and Manzan [26] provided analytical solu-
tions, for conduction type problems, for various two and three-
dimensional elements, including triangles and tetrahedra.

In the present work, it is shown how the eigenvalue problem of
the undistorted parallelepiped with selectively scaled masses can
be reduced to a sequence of second or third order polynomial
equations. Explicit expressions for xe

max are provided and several
numerical examples are used to test the accuracy and computa-
tional effectiveness of the proposed selective scaling technique. It
is also shown how the analytical computation of xe

max can lead to
significant computational gains in some circumstances.

2. Selective mass scaling

The dynamic equilibrium equations of the undamped discret-
ized system are given by

Maþ f int ¼ fext ð4Þ

where a is the vector of nodal accelerations, M is the mass matrix,
fint and fext the vectors of equivalent internal and external nodal
forces, respectively. The effect of prescribed displacements is as-
sumed to be incorporated in fext. The implementation of the central
difference integration scheme requires that the accelerations are
computed at each time-step as

a ¼M�1f ð5Þ

where f = fext � fint and, for effective computations, M is assumed to
be diagonal.

As anticipated in the previous section, the idea is to modify the
element mass matrix preserving its diagonal structure and without
affecting lower order structural eigenmodes. This can be achieved
by scaling masses of individual elements, in such a way that the
energy associated to their rigid body modes remains unaltered.
In solid-shell elements the thickness is inherently different from
the element in-plane dimensions and can be easily identified from
the shell configuration. Making reference to the eight-node solid-
shell element with lumped masses shown in Fig. 1, the upper
and lower surfaces of the element can also be easily identified. If
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