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a b s t r a c t

The Bending-Gradient theory for thick plates is the extension to heterogeneous plates of Reissner–Mindlin
theory originally designed for homogeneous plates. In this paper the Bending-Gradient theory is
extended to in-plane periodic structures made of connected beams (space frames) which can be consid-
ered macroscopically as a plate. Its application to a square beam lattice reveals that classical Reissner–
Mindlin theory cannot properly model such microstructures. Comparisons with exact solutions show that
only the Bending-Gradient theory captures second order effects in both deflection and local stress fields.

� 2012 Civil-Comp Ltd and Elsevier Ltd. All rights reserved.

1. Introduction

The classical theory of plates, known also as Kirchhoff–Love
plate theory is based on the assumption that the normal to the
mid-plane of the plate remains normal after transformation. This
theory is also the first order of the asymptotic expansion with re-
spect to the thickness [1]. Thus, it presents a good theoretical jus-
tification and was soundly extended to the case of periodic plates
[2]. It enables to have a first order estimate of the macroscopic
deflection as well as local stress fields. In most applications the first
order deflection is accurate enough. However, this theory does not
capture the local effect of shear forces on the microstructure be-
cause shear forces are one higher-order derivative of the bending
moment in equilibrium equations (Qa = Mab,b).

Because shear forces are part of the macroscopic equilibrium of
the plate, their effect is also of great interest for engineers when
designing structures. However, modeling properly the action of
shear forces is still a controversial issue. Reissner [3] suggested a
model for homogeneous plates based on a parabolic distribution
of transverse shear stress through the thickness (Reissner–Mindlin
theory). This model performs well for homogeneous plates and
gives more natural boundary conditions than those of Kirchhoff–
Love theory. Thus, it is appreciated by engineers and broadly used
in applied mechanics. However, the direct extension of this model
to more complex microstructures raised many difficulties. Many
suggestions were made for laminated plates [4–9] as well as in-
plane periodic plates [10,11], leading to more complex models.

Revisiting the approach from Reissner [3] directly with lami-
nated plates, Lebée and Sab [12,13] showed that the transverse
shear static variables which come out when the plate is heteroge-
neous are not shear forces Qa but the full gradient of the bending
moment Rabc = Mab,c. Using conventional variational tools, they de-
rived a new plate theory – called Bending-Gradient theory – which
is actually turned into Reissner–Mindlin theory when the plate is
homogeneous. This new plate theory is seen by the authors as an
extension of Reissner’s theory to heterogeneous plates which pre-
serves most of its simplicity. Originally designed for laminated
plates, it was also extended to in-plane periodic plates using aver-
aging considerations such as Hill–Mandel principle and success-
fully applied to sandwich panels [14,15].

In order to give a more comprehensive illustration of the features
of this new theory, we extend its homogenization scheme to space
frames (Section 2). Space frames are large roofings made of many
identical unit-cells. Numerous illustration are given in Buckminster
Fuller’s achievements. In this work, a space frame is a unit-cell made
of connected beams periodically reproduced in a plane and which
‘‘from far’’ can be considered as a plate. Many devices fall into this
category: space trusses [16–19], tensegrity, nexorade [20], grid-
shells [21], lattices, expanded metal, gratings, etc.

Let’s point out that very few methods exist in the literature for
deriving a thick plate macroscopic model when the microstructure
is made of structural elements. Clearly, theories for laminates are
not suitable for the present microstructure and we need an ap-
proach which takes into account the periodicity of the plate. There
is also a large literature dedicated to the homogenization of beam
lattices (also referred as discrete medias [22,23]. However, these
approaches lead only to 3D or in-plane macroscopic models.
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Finally, works from Lewinski [10] and Cecchi and Sab [11] suggest
homogenization techniques for a thick plate which apply only to
microstructures with the classical Cauchy’s continuum. Hence, in
this respect the present approach is innovative.

One can argue that from an engineering point of view, the full
simulation of the lattice remains affordable in terms of computation
and will directly lead to more accurate results. However, because
these structures are periodic, their design is often based on the
assessment of a single unit-cell. Engineers check if this unit-cell sus-
tains highest loads in critical areas and then, set the design for the
entire roof. Having a single unit-cell reproduced many times enables
returns to scale and reduces costs. Such an approach requires a good
knowledge of local stress fields in the unit-cell generated by macro-
scopic loadings, independently of the configuration of the plate,
which is exactly the purpose of homogenization techniques. Hence
these approaches are complementary of full simulations.

In Section 3 we consider a square beam lattice (Fig. 1) and apply
both Bending-Gradient and Cecchi and Sab [11] Reissner–Mindlin
homogenization scheme. This very simple pattern will enable the
derivation of closed-form solutions of the auxiliary problems
which are easy to interpret even if the approach can handle 3D
geometries. Let us already point out that, because of the patterns
symmetries, the Reissner–Mindlin shear forces stiffness F� (Qa = Fab-

cb, where ca is Reissner–Mindlin shear strain) is necessarily isotro-
pic1: Fab = Fdab. However, the pattern must be somehow sensitive to
the bending orientation.

In order to check this prediction, a comparison with exact solu-
tions of the cylindrical bending of the lattice in two orientations is
performed in Section 4. It reveals that only the Bending-Gradient
theory is able to capture second order effects both in terms of
deflection and local stress fields.

2. Homogenization of a periodic space frame as a thick plate

Full details about the Bending-Gradient plate theory are pro-
vided in [12–14]. In this section we recall its main features and de-
rive a homogenization scheme dedicated to space frames.

2.1. Summary of the Bending-Gradient plate model

We consider a linear elastic plate which mid-plane is the 2D do-
main x � R2. Cartesian coordinates (x1,x2,x3) in the reference
frame (e1,e2,e3) are used to describe macroscopic fields. At this
stage, the microstructure of the plate is not specified.

The membrane stress Nab, the bending moment Mab, and shear
forces Qa (a,b,c . . . = 1,2) are the usual generalized stresses for
plates. Moreover, the main feature of the Bending-Gradient theory
is the introduction of an additional static unknown: the gradient of

the bending moment Rabc = Mab,c. The 2D third-order2 tensor
_
R

complies with the following symmetry: Rabc = Rbac. It is possible to

derive shear forces Q from
_
R with: Qa = Rabb.

The full bending gradient
_
R has six components (taking into ac-

count symmetries of indices) whereas Q has two components.
Thus, using the full bending gradient as static unknown introduces
four additional static unknowns. More precisely: R111 and R222 are
respectively the cylindrical bending part of shear forces Q1 and Q2,
R121 and R122 are respectively the torsion part of these shear forces
and R112 and R221 are linked to strictly self-equilibrated stresses.
Equilibrium equations and stress boundary conditions are detailed
in Appendix A. They are very similar to those of Reissner–Mindlin
theory where Qa = Mab,b is replaced by Rabc = Mab,c.

The main difference between Reissner–Mindlin and Bending-
Gradient plate theories is that the latter enables the distinction between
each component of the gradient of the bending moment whereas
they are mixed into shear forces with Reissner–Mindlin theory.

Generalized stresses Nab, Mab and Rabc work respectively with the
dual strain variables: eab, the conventional membrane strain,vab the
curvature and Cabc the third order tensor related to generalized
shear strains. These strain fields must comply with the compatibility
conditions and boundary conditions detailed in Appendix A.

Finally, assuming uncoupling between ðN
�
;M
�
Þ and

_
R (see

[12,14], the Bending-Gradient plate constitutive equations are
written as:
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where A
�
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;D
�
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are conventional Kirchhoff–Love fourth order

stiffness tensors and \ : " is the double contraction product. The

generalized shear compliance tensor f
__

is a sixth order tensor3

and \ ..
.

" denotes a triple contraction product: f
__

..

.

_
R ¼ ðfabcd�fRf�dÞ.

In some cases, the Bending-Gradient is turned into a Reissner–
Mindlin plate model. This is the case for homogeneous plates. In
order to estimate the difference between both plate models we de-
fined the isotropic projection of the Bending-Gradient stress en-
ergy density on a Reissner–Mindlin one in [12]. According to this
projection, the Reissner–Mindlin part of f

__

is:
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where i
�

is the identity for in-plane elasticity tensors
ðiabcd ¼ 1

2 ðdacdbd þ daddbcÞÞ and i
�
� i
�
¼ ðiabcgigd�fÞ is a sixth order ten-

sor. Consequently, we suggested the following relative distance be-
tween the Bending-Gradient and the Reissner–Mindlin stress
energy densities:

DRM=BG ¼
k f
__
� f

__

RMk

k f
__
k ;

where k f
__
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fabcd�ffabcd�f

q ð3Þ

Fig. 1. A square beam lattice.

1 Two orthogonal direction of orthotropy and invariance under 90� in-plane
rotation.

2 Vectors and higher-order tensors are boldfaced and different underlinings are
used for each order: vectors are straight underlined, u. Second order tensors are
underlined with a tilde: M

�
. Third order tensors are underlined with a parenthesis:

_
R.

Fourth order tensors are doubly underlined with a tilde: D
�

. Sixth order tensors are
doubly underlined with a parenthesis: f

__

.
3 fabcdef follows major symmetry: fabcdef = ffedcba and minor symmetry fabcdef =

fbacdef. Thus there are only 21 independent components.
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